您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
166 行
6.3 KiB
166 行
6.3 KiB
from mlagents_envs.base_env import (
|
|
BaseEnv,
|
|
DecisionSteps,
|
|
TerminalSteps,
|
|
BehaviorSpec,
|
|
BehaviorName,
|
|
AgentId,
|
|
ActionType,
|
|
)
|
|
from mlagents_envs.exception import UnityActionException, UnityObservationException
|
|
|
|
from typing import List, Tuple
|
|
|
|
import numpy as np
|
|
|
|
try:
|
|
import gym
|
|
except ImportError:
|
|
raise ImportError("gym is not installed, gym required to use the GymToUnityWrapper")
|
|
|
|
|
|
class GymToUnityWrapper(BaseEnv):
|
|
_DEFAULT_BEHAVIOR_NAME = "gym_behavior_name"
|
|
_AGENT_ID = 1
|
|
|
|
def __init__(self, gym_env, name=None):
|
|
self._gym_env = gym_env
|
|
self._first_message = True
|
|
self._behavior_name = name
|
|
if self._behavior_name is None:
|
|
self._behavior_name = self._DEFAULT_BEHAVIOR_NAME
|
|
action_type = ActionType.CONTINUOUS
|
|
action_shape = 0
|
|
if isinstance(self._gym_env.action_space, gym.spaces.Box):
|
|
action_type = ActionType.CONTINUOUS
|
|
action_shape = np.prod(self._gym_env.action_space.shape)
|
|
elif isinstance(self._gym_env.action_space, gym.spaces.Discrete):
|
|
action_shape = (self._gym_env.action_space.n,)
|
|
action_type = ActionType.DISCRETE
|
|
else:
|
|
raise UnityActionException(
|
|
f"Unknown action type {self._gym_env.action_space}"
|
|
)
|
|
self.obs_ratio = np.maximum(
|
|
self._gym_env.observation_space.high, -self._gym_env.observation_space.low
|
|
)
|
|
if not isinstance(self._gym_env.observation_space, gym.spaces.Box):
|
|
raise UnityObservationException(
|
|
f"Unknown observation type {self._gym_env.observation_space}"
|
|
)
|
|
self._behavior_specs = BehaviorSpec(
|
|
observation_shapes=[self._gym_env.observation_space.shape],
|
|
action_type=action_type,
|
|
action_shape=action_shape,
|
|
)
|
|
self._g_action: np.ndarray = None
|
|
self._current_steps: Tuple[DecisionSteps, TerminalSteps] = (None, None)
|
|
|
|
def step(self) -> None:
|
|
if self._first_message:
|
|
self.reset()
|
|
return
|
|
obs, rew, done, info = self._gym_env.step(self._g_action)
|
|
if not done:
|
|
self._current_steps = (
|
|
DecisionSteps(
|
|
obs=[np.expand_dims(obs / self.obs_ratio, axis=0)],
|
|
reward=np.array([rew], dtype=np.float32),
|
|
agent_id=np.array([self._AGENT_ID], dtype=np.int32),
|
|
action_mask=None,
|
|
),
|
|
TerminalSteps.empty(self._behavior_specs),
|
|
)
|
|
else:
|
|
self._first_message = True
|
|
self._current_steps = (
|
|
DecisionSteps.empty(self._behavior_specs),
|
|
TerminalSteps(
|
|
obs=[np.expand_dims(obs / self.obs_ratio, axis=0)],
|
|
reward=np.array([rew], dtype=np.float32),
|
|
max_step=np.array(
|
|
[info.get("TimeLimit.truncated", False)], dtype=np.bool
|
|
),
|
|
agent_id=np.array([self._AGENT_ID], dtype=np.int32),
|
|
),
|
|
)
|
|
|
|
def reset(self) -> None:
|
|
self._first_message = False
|
|
obs = self._gym_env.reset()
|
|
self._current_steps = (
|
|
DecisionSteps(
|
|
obs=[np.expand_dims(obs / self.obs_ratio, axis=0)],
|
|
reward=np.array([0], dtype=np.float32),
|
|
agent_id=np.array([self._AGENT_ID], dtype=np.int32),
|
|
action_mask=None,
|
|
),
|
|
TerminalSteps.empty(self._behavior_specs),
|
|
)
|
|
|
|
def close(self) -> None:
|
|
self._gym_env.close()
|
|
|
|
def get_behavior_names(self) -> List[BehaviorName]:
|
|
return [self._behavior_name]
|
|
|
|
def set_actions(self, behavior_name: BehaviorName, action: np.ndarray) -> None:
|
|
assert behavior_name == self._behavior_name
|
|
spec = self._behavior_specs
|
|
expected_type = np.float32 if spec.is_action_continuous() else np.int32
|
|
n_agents = len(self._current_steps[0])
|
|
expected_shape = (n_agents, spec.action_size)
|
|
if action.shape != expected_shape:
|
|
raise UnityActionException(
|
|
"The behavior {0} needs an input of dimension {1} but received input of dimension {2}".format(
|
|
behavior_name, expected_shape, action.shape
|
|
)
|
|
)
|
|
if action.dtype != expected_type:
|
|
action = action.astype(expected_type)
|
|
if n_agents == 0:
|
|
return
|
|
if isinstance(self._gym_env.action_space, gym.spaces.Discrete):
|
|
self._g_action = int(action[0, 0])
|
|
elif isinstance(self._gym_env.action_space, gym.spaces.Box):
|
|
self._g_action = action[0]
|
|
else:
|
|
raise UnityActionException(
|
|
f"Unknown action type {self._gym_env.action_space}"
|
|
)
|
|
|
|
def set_action_for_agent(
|
|
self, behavior_name: BehaviorName, agent_id: AgentId, action: np.ndarray
|
|
) -> None:
|
|
assert behavior_name == self._behavior_name
|
|
assert agent_id == self._AGENT_ID
|
|
spec = self._behavior_specs
|
|
expected_shape = (spec.action_size,)
|
|
if action.shape != expected_shape:
|
|
raise UnityActionException(
|
|
f"The Agent {0} with BehaviorName {1} needs an input of dimension "
|
|
f"{2} but received input of dimension {3}".format(
|
|
agent_id, behavior_name, expected_shape, action.shape
|
|
)
|
|
)
|
|
expected_type = np.float32 if spec.is_action_continuous() else np.int32
|
|
if action.dtype != expected_type:
|
|
action = action.astype(expected_type)
|
|
if isinstance(self._gym_env.action_space, gym.spaces.Discrete):
|
|
self._g_action = int(action[0])
|
|
elif isinstance(self._gym_env.action_space, gym.spaces.Box):
|
|
self._g_action = action
|
|
else:
|
|
raise UnityActionException(
|
|
f"Unknown action type {self._gym_env.action_space}"
|
|
)
|
|
|
|
def get_steps(
|
|
self, behavior_name: BehaviorName
|
|
) -> Tuple[DecisionSteps, TerminalSteps]:
|
|
assert behavior_name == self._behavior_name
|
|
return self._current_steps
|
|
|
|
def get_behavior_spec(self, behavior_name: BehaviorName) -> BehaviorSpec:
|
|
assert behavior_name == self._behavior_name
|
|
return self._behavior_specs
|