您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
178 行
6.8 KiB
178 行
6.8 KiB
# # Unity ML-Agents Toolkit
|
|
# ## ML-Agent Learning (Behavioral Cloning)
|
|
# Contains an implementation of Behavioral Cloning Algorithm
|
|
|
|
import logging
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from mlagents.envs import AllBrainInfo
|
|
from mlagents.trainers.bc.policy import BCPolicy
|
|
from mlagents.trainers.buffer import Buffer
|
|
from mlagents.trainers.trainer import Trainer
|
|
|
|
logger = logging.getLogger("mlagents.trainers")
|
|
|
|
|
|
class BCTrainer(Trainer):
|
|
"""The BCTrainer is an implementation of Behavioral Cloning."""
|
|
|
|
def __init__(self, brain, trainer_parameters, training, load, seed, run_id):
|
|
"""
|
|
Responsible for collecting experiences and training PPO model.
|
|
:param trainer_parameters: The parameters for the trainer (dictionary).
|
|
:param training: Whether the trainer is set for training.
|
|
:param load: Whether the model should be loaded.
|
|
:param seed: The seed the model will be initialized with
|
|
:param run_id: The The identifier of the current run
|
|
"""
|
|
super(BCTrainer, self).__init__(brain, trainer_parameters, training, run_id)
|
|
self.policy = BCPolicy(seed, brain, trainer_parameters, load)
|
|
self.n_sequences = 1
|
|
self.cumulative_rewards = {}
|
|
self.episode_steps = {}
|
|
self.stats = {
|
|
"Losses/Cloning Loss": [],
|
|
"Environment/Episode Length": [],
|
|
"Environment/Cumulative Reward": [],
|
|
}
|
|
|
|
self.batches_per_epoch = trainer_parameters["batches_per_epoch"]
|
|
|
|
self.demonstration_buffer = Buffer()
|
|
self.evaluation_buffer = Buffer()
|
|
|
|
@property
|
|
def parameters(self):
|
|
"""
|
|
Returns the trainer parameters of the trainer.
|
|
"""
|
|
return self.trainer_parameters
|
|
|
|
@property
|
|
def get_max_steps(self):
|
|
"""
|
|
Returns the maximum number of steps. Is used to know when the trainer should be stopped.
|
|
:return: The maximum number of steps of the trainer
|
|
"""
|
|
return float(self.trainer_parameters["max_steps"])
|
|
|
|
@property
|
|
def get_step(self):
|
|
"""
|
|
Returns the number of steps the trainer has performed
|
|
:return: the step count of the trainer
|
|
"""
|
|
return self.policy.get_current_step()
|
|
|
|
@property
|
|
def get_last_reward(self):
|
|
"""
|
|
Returns the last reward the trainer has had
|
|
:return: the new last reward
|
|
"""
|
|
if len(self.stats["Environment/Cumulative Reward"]) > 0:
|
|
return np.mean(self.stats["Environment/Cumulative Reward"])
|
|
else:
|
|
return 0
|
|
|
|
def increment_step_and_update_last_reward(self):
|
|
"""
|
|
Increment the step count of the trainer and Updates the last reward
|
|
"""
|
|
self.policy.increment_step()
|
|
return
|
|
|
|
def add_experiences(
|
|
self, curr_info: AllBrainInfo, next_info: AllBrainInfo, take_action_outputs
|
|
):
|
|
"""
|
|
Adds experiences to each agent's experience history.
|
|
:param curr_info: Current AllBrainInfo (Dictionary of all current brains and corresponding BrainInfo).
|
|
:param next_info: Next AllBrainInfo (Dictionary of all current brains and corresponding BrainInfo).
|
|
:param take_action_outputs: The outputs of the take action method.
|
|
"""
|
|
|
|
# Used to collect information about student performance.
|
|
info_student = curr_info[self.brain_name]
|
|
next_info_student = next_info[self.brain_name]
|
|
for agent_id in info_student.agents:
|
|
self.evaluation_buffer[agent_id].last_brain_info = info_student
|
|
|
|
for agent_id in next_info_student.agents:
|
|
stored_info_student = self.evaluation_buffer[agent_id].last_brain_info
|
|
if stored_info_student is None:
|
|
continue
|
|
else:
|
|
next_idx = next_info_student.agents.index(agent_id)
|
|
if agent_id not in self.cumulative_rewards:
|
|
self.cumulative_rewards[agent_id] = 0
|
|
self.cumulative_rewards[agent_id] += next_info_student.rewards[next_idx]
|
|
if not next_info_student.local_done[next_idx]:
|
|
if agent_id not in self.episode_steps:
|
|
self.episode_steps[agent_id] = 0
|
|
self.episode_steps[agent_id] += 1
|
|
|
|
def process_experiences(self, current_info: AllBrainInfo, next_info: AllBrainInfo):
|
|
"""
|
|
Checks agent histories for processing condition, and processes them as necessary.
|
|
Processing involves calculating value and advantage targets for model updating step.
|
|
:param current_info: Current AllBrainInfo
|
|
:param next_info: Next AllBrainInfo
|
|
"""
|
|
info_student = next_info[self.brain_name]
|
|
for l in range(len(info_student.agents)):
|
|
if info_student.local_done[l]:
|
|
agent_id = info_student.agents[l]
|
|
self.stats["Environment/Cumulative Reward"].append(
|
|
self.cumulative_rewards.get(agent_id, 0)
|
|
)
|
|
self.stats["Environment/Episode Length"].append(
|
|
self.episode_steps.get(agent_id, 0)
|
|
)
|
|
self.cumulative_rewards[agent_id] = 0
|
|
self.episode_steps[agent_id] = 0
|
|
|
|
def end_episode(self):
|
|
"""
|
|
A signal that the Episode has ended. The buffer must be reset.
|
|
Get only called when the academy resets.
|
|
"""
|
|
self.evaluation_buffer.reset_local_buffers()
|
|
for agent_id in self.cumulative_rewards:
|
|
self.cumulative_rewards[agent_id] = 0
|
|
for agent_id in self.episode_steps:
|
|
self.episode_steps[agent_id] = 0
|
|
|
|
def is_ready_update(self):
|
|
"""
|
|
Returns whether or not the trainer has enough elements to run update model
|
|
:return: A boolean corresponding to whether or not update_model() can be run
|
|
"""
|
|
return (
|
|
len(self.demonstration_buffer.update_buffer["actions"]) > self.n_sequences
|
|
)
|
|
|
|
def update_policy(self):
|
|
"""
|
|
Updates the policy.
|
|
"""
|
|
self.demonstration_buffer.update_buffer.shuffle()
|
|
batch_losses = []
|
|
num_batches = min(
|
|
len(self.demonstration_buffer.update_buffer["actions"]) // self.n_sequences,
|
|
self.batches_per_epoch,
|
|
)
|
|
for i in range(num_batches):
|
|
update_buffer = self.demonstration_buffer.update_buffer
|
|
start = i * self.n_sequences
|
|
end = (i + 1) * self.n_sequences
|
|
mini_batch = update_buffer.make_mini_batch(start, end)
|
|
run_out = self.policy.update(mini_batch, self.n_sequences)
|
|
loss = run_out["policy_loss"]
|
|
batch_losses.append(loss)
|
|
if len(batch_losses) > 0:
|
|
self.stats["Losses/Cloning Loss"].append(np.mean(batch_losses))
|
|
else:
|
|
self.stats["Losses/Cloning Loss"].append(0)
|