Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

260 行
11 KiB

from typing import Optional, Dict, List
import numpy as np
from mlagents.torch_utils import torch, default_device
from mlagents.trainers.buffer import AgentBuffer, BufferKey
from mlagents.trainers.torch.components.reward_providers.base_reward_provider import (
BaseRewardProvider,
)
from mlagents.trainers.settings import GAILSettings
from mlagents_envs.base_env import BehaviorSpec
from mlagents_envs import logging_util
from mlagents.trainers.torch.utils import ModelUtils
from mlagents.trainers.torch.agent_action import AgentAction
from mlagents.trainers.torch.action_flattener import ActionFlattener
from mlagents.trainers.torch.networks import NetworkBody
from mlagents.trainers.torch.layers import linear_layer, Initialization
from mlagents.trainers.demo_loader import demo_to_buffer
from mlagents.trainers.trajectory import ObsUtil
logger = logging_util.get_logger(__name__)
class GAILRewardProvider(BaseRewardProvider):
def __init__(self, specs: BehaviorSpec, settings: GAILSettings) -> None:
super().__init__(specs, settings)
self._ignore_done = False
self._discriminator_network = DiscriminatorNetwork(specs, settings)
self._discriminator_network.to(default_device())
_, self._demo_buffer = demo_to_buffer(
settings.demo_path, 1, specs
) # This is supposed to be the sequence length but we do not have access here
params = list(self._discriminator_network.parameters())
self.optimizer = torch.optim.Adam(params, lr=settings.learning_rate)
def evaluate(self, mini_batch: AgentBuffer) -> np.ndarray:
with torch.no_grad():
estimates, _ = self._discriminator_network.compute_estimate(
mini_batch, use_vail_noise=False
)
return ModelUtils.to_numpy(
-torch.log(
1.0
- estimates.squeeze(dim=1)
* (1.0 - self._discriminator_network.EPSILON)
)
)
def update(self, mini_batch: AgentBuffer) -> Dict[str, np.ndarray]:
expert_batch = self._demo_buffer.sample_mini_batch(
mini_batch.num_experiences, 1
)
self._discriminator_network.encoder.update_normalization(expert_batch)
loss, stats_dict = self._discriminator_network.compute_loss(
mini_batch, expert_batch
)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
return stats_dict
def get_modules(self):
return {f"Module:{self.name}": self._discriminator_network}
class DiscriminatorNetwork(torch.nn.Module):
gradient_penalty_weight = 10.0
z_size = 128
alpha = 0.0005
mutual_information = 0.5
EPSILON = 1e-7
initial_beta = 0.0
def __init__(self, specs: BehaviorSpec, settings: GAILSettings) -> None:
super().__init__()
self._use_vail = settings.use_vail
self._settings = settings
encoder_settings = settings.network_settings
if encoder_settings.memory is not None:
encoder_settings.memory = None
logger.warning(
"memory was specified in network_settings but is not supported by GAIL. It is being ignored."
)
self._action_flattener = ActionFlattener(specs.action_spec)
unencoded_size = (
self._action_flattener.flattened_size + 1 if settings.use_actions else 0
) # +1 is for dones
self.encoder = NetworkBody(
specs.observation_specs, encoder_settings, unencoded_size
)
estimator_input_size = encoder_settings.hidden_units
if settings.use_vail:
estimator_input_size = self.z_size
self._z_sigma = torch.nn.Parameter(
torch.ones((self.z_size), dtype=torch.float), requires_grad=True
)
self._z_mu_layer = linear_layer(
encoder_settings.hidden_units,
self.z_size,
kernel_init=Initialization.KaimingHeNormal,
kernel_gain=0.1,
)
self._beta = torch.nn.Parameter(
torch.tensor(self.initial_beta, dtype=torch.float), requires_grad=False
)
self._estimator = torch.nn.Sequential(
linear_layer(estimator_input_size, 1, kernel_gain=0.2), torch.nn.Sigmoid()
)
def get_action_input(self, mini_batch: AgentBuffer) -> torch.Tensor:
"""
Creates the action Tensor. In continuous case, corresponds to the action. In
the discrete case, corresponds to the concatenation of one hot action Tensors.
"""
return self._action_flattener.forward(AgentAction.from_buffer(mini_batch))
def get_state_inputs(self, mini_batch: AgentBuffer) -> List[torch.Tensor]:
"""
Creates the observation input.
"""
n_obs = len(self.encoder.processors)
np_obs = ObsUtil.from_buffer(mini_batch, n_obs)
# Convert to tensors
tensor_obs = [ModelUtils.list_to_tensor(obs) for obs in np_obs]
return tensor_obs
def compute_estimate(
self, mini_batch: AgentBuffer, use_vail_noise: bool = False
) -> torch.Tensor:
"""
Given a mini_batch, computes the estimate (How much the discriminator believes
the data was sampled from the demonstration data).
:param mini_batch: The AgentBuffer of data
:param use_vail_noise: Only when using VAIL : If true, will sample the code, if
false, will return the mean of the code.
"""
inputs = self.get_state_inputs(mini_batch)
if self._settings.use_actions:
actions = self.get_action_input(mini_batch)
dones = torch.as_tensor(
mini_batch[BufferKey.DONE], dtype=torch.float
).unsqueeze(1)
action_inputs = torch.cat([actions, dones], dim=1)
hidden, _ = self.encoder(inputs, action_inputs)
else:
hidden, _ = self.encoder(inputs)
z_mu: Optional[torch.Tensor] = None
if self._settings.use_vail:
z_mu = self._z_mu_layer(hidden)
hidden = torch.normal(z_mu, self._z_sigma * use_vail_noise)
estimate = self._estimator(hidden)
return estimate, z_mu
def compute_loss(
self, policy_batch: AgentBuffer, expert_batch: AgentBuffer
) -> torch.Tensor:
"""
Given a policy mini_batch and an expert mini_batch, computes the loss of the discriminator.
"""
total_loss = torch.zeros(1)
stats_dict: Dict[str, np.ndarray] = {}
policy_estimate, policy_mu = self.compute_estimate(
policy_batch, use_vail_noise=True
)
expert_estimate, expert_mu = self.compute_estimate(
expert_batch, use_vail_noise=True
)
stats_dict["Policy/GAIL Policy Estimate"] = policy_estimate.mean().item()
stats_dict["Policy/GAIL Expert Estimate"] = expert_estimate.mean().item()
discriminator_loss = -(
torch.log(expert_estimate + self.EPSILON)
+ torch.log(1.0 - policy_estimate + self.EPSILON)
).mean()
stats_dict["Losses/GAIL Loss"] = discriminator_loss.item()
total_loss += discriminator_loss
if self._settings.use_vail:
# KL divergence loss (encourage latent representation to be normal)
kl_loss = torch.mean(
-torch.sum(
1
+ (self._z_sigma ** 2).log()
- 0.5 * expert_mu ** 2
- 0.5 * policy_mu ** 2
- (self._z_sigma ** 2),
dim=1,
)
)
vail_loss = self._beta * (kl_loss - self.mutual_information)
with torch.no_grad():
self._beta.data = torch.max(
self._beta + self.alpha * (kl_loss - self.mutual_information),
torch.tensor(0.0),
)
total_loss += vail_loss
stats_dict["Policy/GAIL Beta"] = self._beta.item()
stats_dict["Losses/GAIL KL Loss"] = kl_loss.item()
if self.gradient_penalty_weight > 0.0:
gradient_magnitude_loss = (
self.gradient_penalty_weight
* self.compute_gradient_magnitude(policy_batch, expert_batch)
)
stats_dict["Policy/GAIL Grad Mag Loss"] = gradient_magnitude_loss.item()
total_loss += gradient_magnitude_loss
return total_loss, stats_dict
def compute_gradient_magnitude(
self, policy_batch: AgentBuffer, expert_batch: AgentBuffer
) -> torch.Tensor:
"""
Gradient penalty from https://arxiv.org/pdf/1704.00028. Adds stability esp.
for off-policy. Compute gradients w.r.t randomly interpolated input.
"""
policy_inputs = self.get_state_inputs(policy_batch)
expert_inputs = self.get_state_inputs(expert_batch)
interp_inputs = []
for policy_input, expert_input in zip(policy_inputs, expert_inputs):
obs_epsilon = torch.rand(policy_input.shape)
interp_input = obs_epsilon * policy_input + (1 - obs_epsilon) * expert_input
interp_input.requires_grad = True # For gradient calculation
interp_inputs.append(interp_input)
if self._settings.use_actions:
policy_action = self.get_action_input(policy_batch)
expert_action = self.get_action_input(expert_batch)
action_epsilon = torch.rand(policy_action.shape)
policy_dones = torch.as_tensor(
policy_batch[BufferKey.DONE], dtype=torch.float
).unsqueeze(1)
expert_dones = torch.as_tensor(
expert_batch[BufferKey.DONE], dtype=torch.float
).unsqueeze(1)
dones_epsilon = torch.rand(policy_dones.shape)
action_inputs = torch.cat(
[
action_epsilon * policy_action
+ (1 - action_epsilon) * expert_action,
dones_epsilon * policy_dones + (1 - dones_epsilon) * expert_dones,
],
dim=1,
)
action_inputs.requires_grad = True
hidden, _ = self.encoder(interp_inputs, action_inputs)
encoder_input = tuple(interp_inputs + [action_inputs])
else:
hidden, _ = self.encoder(interp_inputs)
encoder_input = tuple(interp_inputs)
if self._settings.use_vail:
use_vail_noise = True
z_mu = self._z_mu_layer(hidden)
hidden = torch.normal(z_mu, self._z_sigma * use_vail_noise)
estimate = self._estimator(hidden).squeeze(1).sum()
gradient = torch.autograd.grad(estimate, encoder_input, create_graph=True)[0]
# Norm's gradient could be NaN at 0. Use our own safe_norm
safe_norm = (torch.sum(gradient ** 2, dim=1) + self.EPSILON).sqrt()
gradient_mag = torch.mean((safe_norm - 1) ** 2)
return gradient_mag