Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

380 行
17 KiB

import atexit
import io
import glob
import json
import logging
import numpy as np
import os
import socket
import subprocess
from .brain import BrainInfo, BrainParameters
from .exception import UnityEnvironmentException, UnityActionException
from PIL import Image
from sys import platform
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class UnityEnvironment(object):
def __init__(self, file_name, worker_id=0,
base_port=5005):
"""
Starts a new unity environment and establishes a connection with the environment.
Notice: Currently communication between Unity and Python takes place over an open socket without authentication.
Ensure that the network where training takes place is secure.
:string file_name: Name of Unity environment binary.
:int base_port: Baseline port number to connect to Unity environment over. worker_id increments over this.
:int worker_id: Number to add to communication port (5005) [0]. Used for asynchronous agent scenarios.
"""
atexit.register(self.close)
self.port = base_port + worker_id
self._buffer_size = 120000
self._loaded = False
self._open_socket = False
try:
# Establish communication socket
self._socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self._socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
self._socket.bind(("localhost", self.port))
self._open_socket = True
except socket.error:
self._open_socket = True
self.close()
raise socket.error("Couldn't launch new environment because worker number {} is still in use. "
"You may need to manually close a previously opened environment "
"or use a different worker number.".format(str(worker_id)))
cwd = os.getcwd()
try:
true_filename = os.path.basename(os.path.normpath(file_name))
launch_string = ""
if platform == "linux" or platform == "linux2":
candidates = glob.glob(os.path.join(cwd, file_name) + '.x86_64')
if len(candidates) == 0:
candidates = glob.glob(os.path.join(cwd, file_name) + '.x86')
if len(candidates) > 0:
launch_string = candidates[0]
else:
raise UnityEnvironmentException("Couldn't launch new environment. Provided filename "
"does not match any environments in {}. ".format(cwd))
elif platform == 'darwin':
launch_string = os.path.join(cwd, file_name + '.app', 'Contents', 'MacOS', true_filename)
elif platform == 'win32':
launch_string = os.path.join(cwd, file_name + '.exe')
# Launch Unity environment
proc1 = subprocess.Popen(
[launch_string,
'--port', str(self.port)])
except os.error:
self.close()
raise UnityEnvironmentException("Couldn't launch new environment. "
"Provided filename does not match any \environments in {}."
.format(cwd))
self._socket.settimeout(30)
try:
try:
self._socket.listen(1)
self._conn, _ = self._socket.accept()
self._conn.setblocking(1)
p = self._conn.recv(self._buffer_size).decode('utf-8')
p = json.loads(p)
except socket.timeout as e:
raise UnityEnvironmentException(
"The Unity environment took too long to respond. Make sure {} does not need user interaction to launch "
"and that the Academy and the external Brain(s) are attached to objects in the Scene.".format(
str(file_name)))
except UnityEnvironmentException:
proc1.kill()
self.close()
raise
self._data = {}
self._global_done = None
self._academy_name = p["AcademyName"]
self._brains = {}
self._brain_names = p["brainNames"]
self._external_brain_names = p["externalBrainNames"]
self._external_brain_names = [] if self._external_brain_names is None else self._external_brain_names
self._num_brains = len(self._brain_names)
self._num_external_brains = len(self._external_brain_names)
self._resetParameters = p["resetParameters"]
for i in range(self._num_brains):
self._brains[self._brain_names[i]] = BrainParameters(self._brain_names[i], p["brainParameters"][i])
print(p["brainParameters"][i])
self._conn.send(b".")
self._loaded = True
logger.info("\n'{}' started successfully!".format(self._academy_name))
if (self._num_external_brains == 0):
logger.warning(" No External Brains found in the Unity Environment. "
"You will not be able to pass actions to your agent(s).")
@property
def brains(self):
return self._brains
@property
def global_done(self):
return self._global_done
@property
def academy_name(self):
return self._academy_name
@property
def number_brains(self):
return self._num_brains
@property
def number_external_brains(self):
return self._num_external_brains
@property
def brain_names(self):
return self._brain_names
@property
def external_brain_names(self):
return self._external_brain_names
@staticmethod
def _process_pixels(image_bytes=None, bw=False):
"""
Converts bytearray observation image into numpy array, resizes it, and optionally converts it to greyscale
:param image_bytes: input bytearray corresponding to image
:return: processed numpy array of observation from environment
"""
s = bytearray(image_bytes)
image = Image.open(io.BytesIO(s))
s = np.array(image) / 255.0
if bw:
s = np.mean(s, axis=2)
s = np.reshape(s, [s.shape[0], s.shape[1], 1])
return s
def __str__(self):
return '''Unity Academy name: {0}
Number of brains: {1}
Reset Parameters :\n\t\t{2}'''.format(self._academy_name, str(self._num_brains),
"\n\t\t".join([str(k) + " -> " + str(self._resetParameters[k])
for k in self._resetParameters])) + '\n' + \
'\n'.join([str(self._brains[b]) for b in self._brains])
def _get_state_image(self, bw):
"""
Receives observation from socket, and confirms.
:param bw:
:return:
"""
s = self._conn.recv(self._buffer_size)
s = self._process_pixels(image_bytes=s, bw=bw)
self._conn.send(b"RECEIVED")
return s
def _get_state_dict(self):
"""
Receives dictionary of state information from socket, and confirms.
:return:
"""
state = self._conn.recv(self._buffer_size).decode('utf-8')
self._conn.send(b"RECEIVED")
state_dict = json.loads(state)
return state_dict
def reset(self, train_mode=True, config=None):
"""
Sends a signal to reset the unity environment.
:return: A Data structure corresponding to the initial reset state of the environment.
"""
config = config or {}
if self._loaded:
self._conn.send(b"RESET")
self._conn.recv(self._buffer_size)
self._conn.send(json.dumps({"train_model": train_mode, "parameters": config}).encode('utf-8'))
for k in config:
if (k in self._resetParameters) and (isinstance(config[k], (int, float))):
self._resetParameters[k] = config[k]
elif not isinstance(config[k], (int, float)):
raise UnityEnvironmentException(
"The value for parameter '{0}'' must be an Integer or a Float.".format(k))
else:
raise UnityEnvironmentException("The parameter '{0}' is not a valid parameter.".format(k))
return self._get_state()
else:
raise UnityEnvironmentException("No Unity environment is loaded.")
def _get_state(self):
"""
Collects experience information from all external brains in environment at current step.
:return: a dictionary BrainInfo objects.
"""
self._data = {}
for index in range(self._num_brains):
state_dict = self._get_state_dict()
b = state_dict["brain_name"]
n_agent = len(state_dict["agents"])
try:
if self._brains[b].state_space_type == "continuous":
states = np.array(state_dict["states"]).reshape((n_agent, self._brains[b].state_space_size))
else:
states = np.array(state_dict["states"]).reshape((n_agent, 1))
except UnityActionException:
raise UnityActionException("Brain {0} has an invalid state. "
"Expecting {1} {2} state but received {3}."
.format(b, n_agent if self._brains[b].state_space_type == "discrete"
else str(self._brains[b].state_space_size * n_agent),
self._brains[b].state_space_type,
len(state_dict["states"])))
memories = np.array(state_dict["memories"]).reshape((n_agent, self._brains[b].memory_space_size))
rewards = state_dict["rewards"]
dones = state_dict["dones"]
agents = state_dict["agents"]
# actions = state_dict["actions"]
if n_agent > 0 :
actions = np.array(state_dict["actions"]).reshape((n_agent, -1))
else :
actions = np.array([])
observations = []
for o in range(self._brains[b].number_observations):
obs_n = []
for a in range(n_agent):
obs_n.append(self._get_state_image(self._brains[b].camera_resolutions[o]['blackAndWhite']))
observations.append(np.array(obs_n))
self._data[b] = BrainInfo(observations, states, memories, rewards, agents, dones, actions)
self._global_done = self._conn.recv(self._buffer_size).decode('utf-8') == 'True'
return self._data
def _send_action(self, action, memory, value):
"""
Send dictionary of actions, memories, and value estimates over socket.
:param action: a dictionary of lists of actions.
:param memory: a dictionary of lists of of memories.
:param value: a dictionary of lists of of value estimates.
"""
self._conn.recv(self._buffer_size)
action_message = {"action": action, "memory": memory, "value": value}
self._conn.send(json.dumps(action_message).encode('utf-8'))
@staticmethod
def _flatten(arr):
"""
Converts dictionary of arrays to list for transmission over socket.
:param arr: numpy vector.
:return: flattened list.
"""
if isinstance(arr, (int, np.int_, float, np.float_)):
arr = [float(arr)]
if isinstance(arr, np.ndarray):
arr = arr.tolist()
if len(arr) == 0:
return arr
if isinstance(arr[0], np.ndarray):
arr = [item for sublist in arr for item in sublist.tolist()]
if isinstance(arr[0], list):
arr = [item for sublist in arr for item in sublist]
arr = [float(x) for x in arr]
return arr
def step(self, action = None, memory=None, value=None):
"""
Provides the environment with an action, moves the environment dynamics forward accordingly, and returns
observation, state, and reward information to the agent.
:param action: Agent's action to send to environment. Can be a scalar or vector of int/floats.
:param memory: Vector corresponding to memory used for RNNs, frame-stacking, or other auto-regressive process.
:param value: Value estimate to send to environment for visualization. Can be a scalar or vector of float(s).
:return: A Data structure corresponding to the new state of the environment.
"""
action = {} if action is None else action
memory = {} if memory is None else memory
value = {} if value is None else value
if self._loaded and not self._global_done and self._global_done is not None:
if isinstance(action, (int, np.int_, float, np.float_, list, np.ndarray)):
if self._num_external_brains > 1:
raise UnityActionException(
"You have {0} brains, you need to feed a dictionary of brain names a keys, "
"and actions as values".format(self._num_brains))
else:
action = {self._external_brain_names[0]: action}
if isinstance(memory, (int, np.int_, float, np.float_, list, np.ndarray)):
if self._num_external_brains > 1:
raise UnityActionException(
"You have {0} brains, you need to feed a dictionary of brain names as keys "
"and memories as values".format(self._num_brains))
else:
memory = {self._external_brain_names[0]: memory}
if isinstance(value, (int, np.int_, float, np.float_, list, np.ndarray)):
if self._num_external_brains > 1:
raise UnityActionException(
"You have {0} brains, you need to feed a dictionary of brain names as keys "
"and state/action value estimates as values".format(self._num_brains))
else:
value = {self._external_brain_names[0]: value}
for b in self._external_brain_names:
n_agent = len(self._data[b].agents)
if b not in action:
raise UnityActionException("You need to input an action for the brain {0}".format(b))
action[b] = self._flatten(action[b])
if b not in memory:
memory[b] = [0.0] * self._brains[b].memory_space_size * n_agent
else:
memory[b] = self._flatten(memory[b])
if b not in value:
value[b] = [0.0] * n_agent
else:
value[b] = self._flatten(value[b])
if not (len(value[b]) == n_agent):
raise UnityActionException(
"There was a mismatch between the provided value and environment's expectation: "
"The brain {0} expected {1} value but was given {2}".format(b, n_agent, len(value[b])))
if not (len(memory[b]) == self._brains[b].memory_space_size * n_agent):
raise UnityActionException(
"There was a mismatch between the provided memory and environment's expectation: "
"The brain {0} expected {1} memories but was given {2}"
.format(b, self._brains[b].memory_space_size * n_agent, len(memory[b])))
if not ((self._brains[b].action_space_type == "discrete" and len(action[b]) == n_agent) or
(self._brains[b].action_space_type == "continuous" and len(
action[b]) == self._brains[b].action_space_size * n_agent)):
raise UnityActionException(
"There was a mismatch between the provided action and environment's expectation: "
"The brain {0} expected {1} {2} action(s), but was provided: {3}"
.format(b, n_agent if self._brains[b].action_space_type == "discrete" else
str(self._brains[b].action_space_size * n_agent), self._brains[b].action_space_type,
str(action[b])))
self._conn.send(b"STEP")
self._send_action(action, memory, value)
return self._get_state()
elif not self._loaded:
raise UnityEnvironmentException("No Unity environment is loaded.")
elif self._global_done:
raise UnityActionException("The episode is completed. Reset the environment with 'reset()'")
elif self.global_done is None:
raise UnityActionException(
"You cannot conduct step without first calling reset. Reset the environment with 'reset()'")
def close(self):
"""
Sends a shutdown signal to the unity environment, and closes the socket connection.
"""
if self._loaded & self._open_socket:
self._conn.send(b"EXIT")
self._conn.close()
if self._open_socket:
self._socket.close()
self._loaded = False
else:
raise UnityEnvironmentException("No Unity environment is loaded.")