您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
114 行
4.4 KiB
114 行
4.4 KiB
import pytest
|
|
|
|
from mlagents.tf_utils import tf
|
|
|
|
from mlagents.trainers.distributions import (
|
|
GaussianDistribution,
|
|
MultiCategoricalDistribution,
|
|
)
|
|
|
|
|
|
VECTOR_ACTION_SPACE = [2]
|
|
VECTOR_OBS_SPACE = 8
|
|
DISCRETE_ACTION_SPACE = [3, 3, 3, 2]
|
|
BUFFER_INIT_SAMPLES = 32
|
|
NUM_AGENTS = 12
|
|
|
|
|
|
def test_gaussian_distribution():
|
|
with tf.Graph().as_default():
|
|
logits = tf.Variable(initial_value=[[1, 1]], trainable=True, dtype=tf.float32)
|
|
distribution = GaussianDistribution(
|
|
logits,
|
|
act_size=VECTOR_ACTION_SPACE,
|
|
reparameterize=False,
|
|
tanh_squash=False,
|
|
)
|
|
sess = tf.Session()
|
|
with tf.Session() as sess:
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
output = sess.run(distribution.sample)
|
|
for _ in range(10):
|
|
output = sess.run([distribution.sample, distribution.log_probs])
|
|
for out in output:
|
|
assert out.shape[1] == VECTOR_ACTION_SPACE[0]
|
|
output = sess.run([distribution.total_log_probs])
|
|
assert output[0].shape[0] == 1
|
|
# Test entropy is correct
|
|
log_std_tensor = tf.get_default_graph().get_tensor_by_name(
|
|
"log_std/BiasAdd:0"
|
|
)
|
|
feed_dict = {log_std_tensor: [[1.0, 1.0]]}
|
|
entropy = sess.run([distribution.entropy], feed_dict=feed_dict)
|
|
# Entropy with log_std of 1.0 should be 2.42
|
|
assert pytest.approx(entropy[0], 0.01) == 2.42
|
|
|
|
|
|
def test_tanh_distribution():
|
|
with tf.Graph().as_default():
|
|
logits = tf.Variable(initial_value=[[0, 0]], trainable=True, dtype=tf.float32)
|
|
distribution = GaussianDistribution(
|
|
logits, act_size=VECTOR_ACTION_SPACE, reparameterize=False, tanh_squash=True
|
|
)
|
|
sess = tf.Session()
|
|
with tf.Session() as sess:
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
output = sess.run(distribution.sample)
|
|
for _ in range(10):
|
|
output = sess.run([distribution.sample, distribution.log_probs])
|
|
for out in output:
|
|
assert out.shape[1] == VECTOR_ACTION_SPACE[0]
|
|
# Assert action never exceeds [-1,1]
|
|
action = output[0][0]
|
|
for act in action:
|
|
assert act >= -1 and act <= 1
|
|
output = sess.run([distribution.total_log_probs])
|
|
assert output[0].shape[0] == 1
|
|
|
|
|
|
def test_multicategorical_distribution():
|
|
with tf.Graph().as_default():
|
|
logits = tf.Variable(initial_value=[[0, 0]], trainable=True, dtype=tf.float32)
|
|
action_masks = tf.Variable(
|
|
initial_value=[[1 for _ in range(sum(DISCRETE_ACTION_SPACE))]],
|
|
trainable=True,
|
|
dtype=tf.float32,
|
|
)
|
|
distribution = MultiCategoricalDistribution(
|
|
logits, act_size=DISCRETE_ACTION_SPACE, action_masks=action_masks
|
|
)
|
|
sess = tf.Session()
|
|
with tf.Session() as sess:
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
output = sess.run(distribution.sample)
|
|
for _ in range(10):
|
|
sample, log_probs, entropy = sess.run(
|
|
[distribution.sample, distribution.log_probs, distribution.entropy]
|
|
)
|
|
assert len(log_probs[0]) == sum(DISCRETE_ACTION_SPACE)
|
|
# Assert action never exceeds [-1,1]
|
|
assert len(sample[0]) == len(DISCRETE_ACTION_SPACE)
|
|
for i, act in enumerate(sample[0]):
|
|
assert act >= 0 and act <= DISCRETE_ACTION_SPACE[i]
|
|
output = sess.run([distribution.total_log_probs])
|
|
assert output[0].shape[0] == 1
|
|
# Make sure entropy is correct
|
|
assert entropy[0] > 3.8
|
|
|
|
# Test masks
|
|
mask = []
|
|
for space in DISCRETE_ACTION_SPACE:
|
|
mask.append(1)
|
|
for _action_space in range(1, space):
|
|
mask.append(0)
|
|
for _ in range(10):
|
|
sample, log_probs = sess.run(
|
|
[distribution.sample, distribution.log_probs],
|
|
feed_dict={action_masks: [mask]},
|
|
)
|
|
for act in sample[0]:
|
|
assert act >= 0 and act <= 1
|
|
output = sess.run([distribution.total_log_probs])
|