您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
276 行
11 KiB
276 行
11 KiB
from typing import Any, Dict, Optional, List
|
|
from mlagents.tf_utils import tf
|
|
from mlagents_envs.timers import timed
|
|
from mlagents_envs.base_env import DecisionSteps
|
|
from mlagents.trainers.brain import BrainParameters
|
|
from mlagents.trainers.models import EncoderType
|
|
from mlagents.trainers.models import ModelUtils
|
|
from mlagents.trainers.policy.tf_policy import TFPolicy
|
|
from mlagents.trainers.settings import TrainerSettings
|
|
from mlagents.trainers.distributions import (
|
|
GaussianDistribution,
|
|
MultiCategoricalDistribution,
|
|
)
|
|
|
|
EPSILON = 1e-6 # Small value to avoid divide by zero
|
|
|
|
|
|
class NNPolicy(TFPolicy):
|
|
def __init__(
|
|
self,
|
|
seed: int,
|
|
brain: BrainParameters,
|
|
trainer_params: TrainerSettings,
|
|
is_training: bool,
|
|
model_path: str,
|
|
load: bool,
|
|
tanh_squash: bool = False,
|
|
reparameterize: bool = False,
|
|
condition_sigma_on_obs: bool = True,
|
|
create_tf_graph: bool = True,
|
|
):
|
|
"""
|
|
Policy that uses a multilayer perceptron to map the observations to actions. Could
|
|
also use a CNN to encode visual input prior to the MLP. Supports discrete and
|
|
continuous action spaces, as well as recurrent networks.
|
|
:param seed: Random seed.
|
|
:param brain: Assigned BrainParameters object.
|
|
:param trainer_params: Defined training parameters.
|
|
:param is_training: Whether the model should be trained.
|
|
:param load: Whether a pre-trained model will be loaded or a new one created.
|
|
:param model_path: Path where the model should be saved and loaded.
|
|
:param tanh_squash: Whether to use a tanh function on the continuous output, or a clipped output.
|
|
:param reparameterize: Whether we are using the resampling trick to update the policy in continuous output.
|
|
"""
|
|
super().__init__(seed, brain, trainer_params, model_path, load)
|
|
self.grads = None
|
|
self.update_batch: Optional[tf.Operation] = None
|
|
num_layers = self.network_settings.num_layers
|
|
self.h_size = self.network_settings.hidden_units
|
|
if num_layers < 1:
|
|
num_layers = 1
|
|
self.num_layers = num_layers
|
|
self.vis_encode_type = self.network_settings.vis_encode_type
|
|
self.tanh_squash = tanh_squash
|
|
self.reparameterize = reparameterize
|
|
self.condition_sigma_on_obs = condition_sigma_on_obs
|
|
self.trainable_variables: List[tf.Variable] = []
|
|
|
|
# Non-exposed parameters; these aren't exposed because they don't have a
|
|
# good explanation and usually shouldn't be touched.
|
|
self.log_std_min = -20
|
|
self.log_std_max = 2
|
|
if create_tf_graph:
|
|
self.create_tf_graph()
|
|
|
|
def get_trainable_variables(self) -> List[tf.Variable]:
|
|
"""
|
|
Returns a List of the trainable variables in this policy. if create_tf_graph hasn't been called,
|
|
returns empty list.
|
|
"""
|
|
return self.trainable_variables
|
|
|
|
def create_tf_graph(self) -> None:
|
|
"""
|
|
Builds the tensorflow graph needed for this policy.
|
|
"""
|
|
with self.graph.as_default():
|
|
tf.set_random_seed(self.seed)
|
|
_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
|
|
if len(_vars) > 0:
|
|
# We assume the first thing created in the graph is the Policy. If
|
|
# already populated, don't create more tensors.
|
|
return
|
|
|
|
self.create_input_placeholders()
|
|
encoded = self._create_encoder(
|
|
self.visual_in,
|
|
self.processed_vector_in,
|
|
self.h_size,
|
|
self.num_layers,
|
|
self.vis_encode_type,
|
|
)
|
|
if self.use_continuous_act:
|
|
self._create_cc_actor(
|
|
encoded,
|
|
self.tanh_squash,
|
|
self.reparameterize,
|
|
self.condition_sigma_on_obs,
|
|
)
|
|
else:
|
|
self._create_dc_actor(encoded)
|
|
self.trainable_variables = tf.get_collection(
|
|
tf.GraphKeys.TRAINABLE_VARIABLES, scope="policy"
|
|
)
|
|
self.trainable_variables += tf.get_collection(
|
|
tf.GraphKeys.TRAINABLE_VARIABLES, scope="lstm"
|
|
) # LSTMs need to be root scope for Barracuda export
|
|
|
|
self.inference_dict: Dict[str, tf.Tensor] = {
|
|
"action": self.output,
|
|
"log_probs": self.all_log_probs,
|
|
"entropy": self.entropy,
|
|
}
|
|
if self.use_continuous_act:
|
|
self.inference_dict["pre_action"] = self.output_pre
|
|
if self.use_recurrent:
|
|
self.inference_dict["memory_out"] = self.memory_out
|
|
|
|
# We do an initialize to make the Policy usable out of the box. If an optimizer is needed,
|
|
# it will re-load the full graph
|
|
self._initialize_graph()
|
|
|
|
@timed
|
|
def evaluate(
|
|
self, decision_requests: DecisionSteps, global_agent_ids: List[str]
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Evaluates policy for the agent experiences provided.
|
|
:param decision_requests: DecisionSteps object containing inputs.
|
|
:param global_agent_ids: The global (with worker ID) agent ids of the data in the batched_step_result.
|
|
:return: Outputs from network as defined by self.inference_dict.
|
|
"""
|
|
feed_dict = {
|
|
self.batch_size_ph: len(decision_requests),
|
|
self.sequence_length_ph: 1,
|
|
}
|
|
if self.use_recurrent:
|
|
if not self.use_continuous_act:
|
|
feed_dict[self.prev_action] = self.retrieve_previous_action(
|
|
global_agent_ids
|
|
)
|
|
feed_dict[self.memory_in] = self.retrieve_memories(global_agent_ids)
|
|
feed_dict = self.fill_eval_dict(feed_dict, decision_requests)
|
|
run_out = self._execute_model(feed_dict, self.inference_dict)
|
|
return run_out
|
|
|
|
def _create_encoder(
|
|
self,
|
|
visual_in: List[tf.Tensor],
|
|
vector_in: tf.Tensor,
|
|
h_size: int,
|
|
num_layers: int,
|
|
vis_encode_type: EncoderType,
|
|
) -> tf.Tensor:
|
|
"""
|
|
Creates an encoder for visual and vector observations.
|
|
:param h_size: Size of hidden linear layers.
|
|
:param num_layers: Number of hidden linear layers.
|
|
:param vis_encode_type: Type of visual encoder to use if visual input.
|
|
:return: The hidden layer (tf.Tensor) after the encoder.
|
|
"""
|
|
with tf.variable_scope("policy"):
|
|
encoded = ModelUtils.create_observation_streams(
|
|
self.visual_in,
|
|
self.processed_vector_in,
|
|
1,
|
|
h_size,
|
|
num_layers,
|
|
vis_encode_type,
|
|
)[0]
|
|
return encoded
|
|
|
|
def _create_cc_actor(
|
|
self,
|
|
encoded: tf.Tensor,
|
|
tanh_squash: bool = False,
|
|
reparameterize: bool = False,
|
|
condition_sigma_on_obs: bool = True,
|
|
) -> None:
|
|
"""
|
|
Creates Continuous control actor-critic model.
|
|
:param h_size: Size of hidden linear layers.
|
|
:param num_layers: Number of hidden linear layers.
|
|
:param vis_encode_type: Type of visual encoder to use if visual input.
|
|
:param tanh_squash: Whether to use a tanh function, or a clipped output.
|
|
:param reparameterize: Whether we are using the resampling trick to update the policy.
|
|
"""
|
|
if self.use_recurrent:
|
|
self.memory_in = tf.placeholder(
|
|
shape=[None, self.m_size], dtype=tf.float32, name="recurrent_in"
|
|
)
|
|
hidden_policy, memory_policy_out = ModelUtils.create_recurrent_encoder(
|
|
encoded, self.memory_in, self.sequence_length_ph, name="lstm_policy"
|
|
)
|
|
|
|
self.memory_out = tf.identity(memory_policy_out, name="recurrent_out")
|
|
else:
|
|
hidden_policy = encoded
|
|
|
|
with tf.variable_scope("policy"):
|
|
distribution = GaussianDistribution(
|
|
hidden_policy,
|
|
self.act_size,
|
|
reparameterize=reparameterize,
|
|
tanh_squash=tanh_squash,
|
|
condition_sigma=condition_sigma_on_obs,
|
|
)
|
|
|
|
if tanh_squash:
|
|
self.output_pre = distribution.sample
|
|
self.output = tf.identity(self.output_pre, name="action")
|
|
else:
|
|
self.output_pre = distribution.sample
|
|
# Clip and scale output to ensure actions are always within [-1, 1] range.
|
|
output_post = tf.clip_by_value(self.output_pre, -3, 3) / 3
|
|
self.output = tf.identity(output_post, name="action")
|
|
|
|
self.selected_actions = tf.stop_gradient(self.output)
|
|
|
|
self.all_log_probs = tf.identity(distribution.log_probs, name="action_probs")
|
|
self.entropy = distribution.entropy
|
|
|
|
# We keep these tensors the same name, but use new nodes to keep code parallelism with discrete control.
|
|
self.total_log_probs = distribution.total_log_probs
|
|
|
|
def _create_dc_actor(self, encoded: tf.Tensor) -> None:
|
|
"""
|
|
Creates Discrete control actor-critic model.
|
|
:param h_size: Size of hidden linear layers.
|
|
:param num_layers: Number of hidden linear layers.
|
|
:param vis_encode_type: Type of visual encoder to use if visual input.
|
|
"""
|
|
if self.use_recurrent:
|
|
self.prev_action = tf.placeholder(
|
|
shape=[None, len(self.act_size)], dtype=tf.int32, name="prev_action"
|
|
)
|
|
prev_action_oh = tf.concat(
|
|
[
|
|
tf.one_hot(self.prev_action[:, i], self.act_size[i])
|
|
for i in range(len(self.act_size))
|
|
],
|
|
axis=1,
|
|
)
|
|
hidden_policy = tf.concat([encoded, prev_action_oh], axis=1)
|
|
|
|
self.memory_in = tf.placeholder(
|
|
shape=[None, self.m_size], dtype=tf.float32, name="recurrent_in"
|
|
)
|
|
hidden_policy, memory_policy_out = ModelUtils.create_recurrent_encoder(
|
|
hidden_policy,
|
|
self.memory_in,
|
|
self.sequence_length_ph,
|
|
name="lstm_policy",
|
|
)
|
|
|
|
self.memory_out = tf.identity(memory_policy_out, "recurrent_out")
|
|
else:
|
|
hidden_policy = encoded
|
|
|
|
self.action_masks = tf.placeholder(
|
|
shape=[None, sum(self.act_size)], dtype=tf.float32, name="action_masks"
|
|
)
|
|
|
|
with tf.variable_scope("policy"):
|
|
distribution = MultiCategoricalDistribution(
|
|
hidden_policy, self.act_size, self.action_masks
|
|
)
|
|
# It's important that we are able to feed_dict a value into this tensor to get the
|
|
# right one-hot encoding, so we can't do identity on it.
|
|
self.output = distribution.sample
|
|
self.all_log_probs = tf.identity(distribution.log_probs, name="action")
|
|
self.selected_actions = tf.stop_gradient(
|
|
distribution.sample_onehot
|
|
) # In discrete, these are onehot
|
|
self.entropy = distribution.entropy
|
|
self.total_log_probs = distribution.total_log_probs
|