您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
128 行
4.7 KiB
128 行
4.7 KiB
from typing import List, NamedTuple
|
|
import numpy as np
|
|
|
|
from mlagents.trainers.buffer import AgentBuffer
|
|
|
|
|
|
class AgentExperience(NamedTuple):
|
|
obs: List[np.ndarray]
|
|
reward: float
|
|
done: bool
|
|
action: np.ndarray
|
|
action_probs: np.ndarray
|
|
action_pre: np.ndarray # TODO: Remove this
|
|
action_mask: np.ndarray
|
|
prev_action: np.ndarray
|
|
max_step: bool
|
|
memory: np.ndarray
|
|
|
|
|
|
class SplitObservations(NamedTuple):
|
|
vector_observations: np.ndarray
|
|
visual_observations: List[np.ndarray]
|
|
|
|
@staticmethod
|
|
def from_observations(obs: List[np.ndarray]) -> "SplitObservations":
|
|
"""
|
|
Divides a List of numpy arrays into a SplitObservations NamedTuple.
|
|
This allows you to access the vector and visual observations directly,
|
|
without enumerating the list over and over.
|
|
:param obs: List of numpy arrays (observation)
|
|
:returns: A SplitObservations object.
|
|
"""
|
|
vis_obs_indices = []
|
|
vec_obs_indices = []
|
|
for index, observation in enumerate(obs):
|
|
if len(observation.shape) == 1:
|
|
vec_obs_indices.append(index)
|
|
if len(observation.shape) == 3:
|
|
vis_obs_indices.append(index)
|
|
vec_obs = (
|
|
np.concatenate([obs[i] for i in vec_obs_indices], axis=0)
|
|
if len(vec_obs_indices) > 0
|
|
else np.array([], dtype=np.float32)
|
|
)
|
|
vis_obs = [obs[i] for i in vis_obs_indices]
|
|
return SplitObservations(
|
|
vector_observations=vec_obs, visual_observations=vis_obs
|
|
)
|
|
|
|
|
|
class Trajectory(NamedTuple):
|
|
steps: List[AgentExperience]
|
|
next_obs: List[
|
|
np.ndarray
|
|
] # Observation following the trajectory, for bootstrapping
|
|
agent_id: str
|
|
|
|
def to_agentbuffer(self) -> AgentBuffer:
|
|
"""
|
|
Converts a Trajectory to an AgentBuffer
|
|
:param trajectory: A Trajectory
|
|
:returns: AgentBuffer. Note that the length of the AgentBuffer will be one
|
|
less than the trajectory, as the next observation need to be populated from the last
|
|
step of the trajectory.
|
|
"""
|
|
agent_buffer_trajectory = AgentBuffer()
|
|
for step, exp in enumerate(self.steps):
|
|
vec_vis_obs = SplitObservations.from_observations(exp.obs)
|
|
if step < len(self.steps) - 1:
|
|
next_vec_vis_obs = SplitObservations.from_observations(
|
|
self.steps[step + 1].obs
|
|
)
|
|
else:
|
|
next_vec_vis_obs = SplitObservations.from_observations(self.next_obs)
|
|
|
|
for i, _ in enumerate(vec_vis_obs.visual_observations):
|
|
agent_buffer_trajectory["visual_obs%d" % i].append(
|
|
vec_vis_obs.visual_observations[i]
|
|
)
|
|
agent_buffer_trajectory["next_visual_obs%d" % i].append(
|
|
next_vec_vis_obs.visual_observations[i]
|
|
)
|
|
agent_buffer_trajectory["vector_obs"].append(
|
|
vec_vis_obs.vector_observations
|
|
)
|
|
agent_buffer_trajectory["next_vector_in"].append(
|
|
next_vec_vis_obs.vector_observations
|
|
)
|
|
if exp.memory is not None:
|
|
agent_buffer_trajectory["memory"].append(exp.memory)
|
|
|
|
agent_buffer_trajectory["masks"].append(1.0)
|
|
agent_buffer_trajectory["done"].append(exp.done)
|
|
# Add the outputs of the last eval
|
|
if exp.action_pre is not None:
|
|
actions_pre = exp.action_pre
|
|
agent_buffer_trajectory["actions_pre"].append(actions_pre)
|
|
|
|
# value is a dictionary from name of reward to value estimate of the value head
|
|
agent_buffer_trajectory["actions"].append(exp.action)
|
|
agent_buffer_trajectory["action_probs"].append(exp.action_probs)
|
|
|
|
# Store action masks if necessary. Eventually these will be
|
|
# None for continuous actions
|
|
if exp.action_mask is not None:
|
|
agent_buffer_trajectory["action_mask"].append(
|
|
exp.action_mask, padding_value=1
|
|
)
|
|
|
|
agent_buffer_trajectory["prev_action"].append(exp.prev_action)
|
|
|
|
# Add the value outputs if needed
|
|
agent_buffer_trajectory["environment_rewards"].append(exp.reward)
|
|
return agent_buffer_trajectory
|
|
|
|
@property
|
|
def done_reached(self) -> bool:
|
|
"""
|
|
Returns true if trajectory is terminated with a Done.
|
|
"""
|
|
return self.steps[-1].done
|
|
|
|
@property
|
|
def max_step_reached(self) -> bool:
|
|
"""
|
|
Returns true if trajectory was terminated because max steps was reached.
|
|
"""
|
|
return self.steps[-1].max_step
|