您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
231 行
9.1 KiB
231 行
9.1 KiB
import pytest
|
|
|
|
import numpy as np
|
|
from mlagents.tf_utils import tf
|
|
import attr
|
|
|
|
from mlagents.trainers.ppo.optimizer_torch import TorchPPOOptimizer
|
|
from mlagents.trainers.policy.torch_policy import TorchPolicy
|
|
from mlagents.trainers.tests import mock_brain as mb
|
|
from mlagents.trainers.tests.test_trajectory import make_fake_trajectory
|
|
from mlagents.trainers.settings import NetworkSettings, FrameworkType
|
|
from mlagents.trainers.tests.dummy_config import ( # noqa: F401; pylint: disable=unused-variable
|
|
ppo_dummy_config,
|
|
curiosity_dummy_config,
|
|
gail_dummy_config,
|
|
)
|
|
|
|
from mlagents_envs.base_env import ActionSpec
|
|
|
|
|
|
@pytest.fixture
|
|
def dummy_config():
|
|
return attr.evolve(ppo_dummy_config(), framework=FrameworkType.PYTORCH)
|
|
|
|
|
|
VECTOR_ACTION_SPACE = 2
|
|
VECTOR_OBS_SPACE = 8
|
|
DISCRETE_ACTION_SPACE = [3, 3, 3, 2]
|
|
BUFFER_INIT_SAMPLES = 64
|
|
NUM_AGENTS = 12
|
|
|
|
CONTINUOUS_ACTION_SPEC = ActionSpec.create_continuous(VECTOR_ACTION_SPACE)
|
|
DISCRETE_ACTION_SPEC = ActionSpec.create_discrete(tuple(DISCRETE_ACTION_SPACE))
|
|
|
|
|
|
def create_test_ppo_optimizer(dummy_config, use_rnn, use_discrete, use_visual):
|
|
mock_specs = mb.setup_test_behavior_specs(
|
|
use_discrete,
|
|
use_visual,
|
|
vector_action_space=DISCRETE_ACTION_SPACE
|
|
if use_discrete
|
|
else VECTOR_ACTION_SPACE,
|
|
vector_obs_space=VECTOR_OBS_SPACE,
|
|
)
|
|
|
|
trainer_settings = attr.evolve(dummy_config)
|
|
trainer_settings.network_settings.memory = (
|
|
NetworkSettings.MemorySettings(sequence_length=16, memory_size=10)
|
|
if use_rnn
|
|
else None
|
|
)
|
|
policy = TorchPolicy(0, mock_specs, trainer_settings, "test", False)
|
|
optimizer = TorchPPOOptimizer(policy, trainer_settings)
|
|
return optimizer
|
|
|
|
|
|
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
|
|
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
|
|
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
|
|
def test_ppo_optimizer_update(dummy_config, rnn, visual, discrete):
|
|
# Test evaluate
|
|
tf.reset_default_graph()
|
|
optimizer = create_test_ppo_optimizer(
|
|
dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual
|
|
)
|
|
# Test update
|
|
update_buffer = mb.simulate_rollout(
|
|
BUFFER_INIT_SAMPLES,
|
|
optimizer.policy.behavior_spec,
|
|
memory_size=optimizer.policy.m_size,
|
|
)
|
|
# Mock out reward signal eval
|
|
update_buffer["advantages"] = update_buffer["environment_rewards"]
|
|
update_buffer["extrinsic_returns"] = update_buffer["environment_rewards"]
|
|
update_buffer["extrinsic_value_estimates"] = update_buffer["environment_rewards"]
|
|
|
|
# NOTE: In TensorFlow, the log_probs are saved as one for every discrete action, whereas
|
|
# in PyTorch it is saved as the total probability per branch. So we need to modify the
|
|
# log prob in the fake buffer here.
|
|
if discrete:
|
|
update_buffer["discrete_log_probs"] = np.ones_like(
|
|
update_buffer["discrete_action"]
|
|
)
|
|
else:
|
|
update_buffer["continuous_log_probs"] = np.ones_like(
|
|
update_buffer["continuous_action"]
|
|
)
|
|
return_stats = optimizer.update(
|
|
update_buffer,
|
|
num_sequences=update_buffer.num_experiences // optimizer.policy.sequence_length,
|
|
)
|
|
# Make sure we have the right stats
|
|
required_stats = [
|
|
"Losses/Policy Loss",
|
|
"Losses/Value Loss",
|
|
"Policy/Learning Rate",
|
|
"Policy/Epsilon",
|
|
"Policy/Beta",
|
|
]
|
|
for stat in required_stats:
|
|
assert stat in return_stats.keys()
|
|
|
|
|
|
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
|
|
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
|
|
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
|
|
# We need to test this separately from test_reward_signals.py to ensure no interactions
|
|
def test_ppo_optimizer_update_curiosity(
|
|
dummy_config, curiosity_dummy_config, rnn, visual, discrete # noqa: F811
|
|
):
|
|
# Test evaluate
|
|
tf.reset_default_graph()
|
|
dummy_config.reward_signals = curiosity_dummy_config
|
|
optimizer = create_test_ppo_optimizer(
|
|
dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual
|
|
)
|
|
# Test update
|
|
update_buffer = mb.simulate_rollout(
|
|
BUFFER_INIT_SAMPLES,
|
|
optimizer.policy.behavior_spec,
|
|
memory_size=optimizer.policy.m_size,
|
|
)
|
|
# Mock out reward signal eval
|
|
update_buffer["advantages"] = update_buffer["environment_rewards"]
|
|
update_buffer["extrinsic_returns"] = update_buffer["environment_rewards"]
|
|
update_buffer["extrinsic_value_estimates"] = update_buffer["environment_rewards"]
|
|
update_buffer["curiosity_returns"] = update_buffer["environment_rewards"]
|
|
update_buffer["curiosity_value_estimates"] = update_buffer["environment_rewards"]
|
|
# NOTE: In TensorFlow, the log_probs are saved as one for every discrete action, whereas
|
|
# in PyTorch it is saved as the total probability per branch. So we need to modify the
|
|
# log prob in the fake buffer here.
|
|
if discrete:
|
|
update_buffer["discrete_log_probs"] = np.ones_like(
|
|
update_buffer["discrete_action"]
|
|
)
|
|
else:
|
|
update_buffer["continuous_log_probs"] = np.ones_like(
|
|
update_buffer["continuous_action"]
|
|
)
|
|
optimizer.update(
|
|
update_buffer,
|
|
num_sequences=update_buffer.num_experiences // optimizer.policy.sequence_length,
|
|
)
|
|
|
|
|
|
# We need to test this separately from test_reward_signals.py to ensure no interactions
|
|
def test_ppo_optimizer_update_gail(gail_dummy_config, dummy_config): # noqa: F811
|
|
# Test evaluate
|
|
dummy_config.reward_signals = gail_dummy_config
|
|
config = attr.evolve(ppo_dummy_config(), framework=FrameworkType.PYTORCH)
|
|
optimizer = create_test_ppo_optimizer(
|
|
config, use_rnn=False, use_discrete=False, use_visual=False
|
|
)
|
|
# Test update
|
|
update_buffer = mb.simulate_rollout(
|
|
BUFFER_INIT_SAMPLES, optimizer.policy.behavior_spec
|
|
)
|
|
# Mock out reward signal eval
|
|
update_buffer["advantages"] = update_buffer["environment_rewards"]
|
|
update_buffer["extrinsic_returns"] = update_buffer["environment_rewards"]
|
|
update_buffer["extrinsic_value_estimates"] = update_buffer["environment_rewards"]
|
|
update_buffer["gail_returns"] = update_buffer["environment_rewards"]
|
|
update_buffer["gail_value_estimates"] = update_buffer["environment_rewards"]
|
|
update_buffer["continuous_log_probs"] = np.ones_like(
|
|
update_buffer["continuous_action"]
|
|
)
|
|
optimizer.update(
|
|
update_buffer,
|
|
num_sequences=update_buffer.num_experiences // optimizer.policy.sequence_length,
|
|
)
|
|
|
|
# Check if buffer size is too big
|
|
update_buffer = mb.simulate_rollout(3000, optimizer.policy.behavior_spec)
|
|
# Mock out reward signal eval
|
|
update_buffer["advantages"] = update_buffer["environment_rewards"]
|
|
update_buffer["extrinsic_returns"] = update_buffer["environment_rewards"]
|
|
update_buffer["extrinsic_value_estimates"] = update_buffer["environment_rewards"]
|
|
update_buffer["gail_returns"] = update_buffer["environment_rewards"]
|
|
update_buffer["gail_value_estimates"] = update_buffer["environment_rewards"]
|
|
# NOTE: In TensorFlow, the log_probs are saved as one for every discrete action, whereas
|
|
# in PyTorch it is saved as the total probability per branch. So we need to modify the
|
|
# log prob in the fake buffer here.
|
|
update_buffer["continuous_log_probs"] = np.ones_like(
|
|
update_buffer["continuous_action"]
|
|
)
|
|
optimizer.update(
|
|
update_buffer,
|
|
num_sequences=update_buffer.num_experiences // optimizer.policy.sequence_length,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
|
|
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
|
|
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
|
|
def test_ppo_get_value_estimates(dummy_config, rnn, visual, discrete):
|
|
optimizer = create_test_ppo_optimizer(
|
|
dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual
|
|
)
|
|
time_horizon = 15
|
|
trajectory = make_fake_trajectory(
|
|
length=time_horizon,
|
|
observation_shapes=optimizer.policy.behavior_spec.observation_shapes,
|
|
action_spec=DISCRETE_ACTION_SPEC if discrete else CONTINUOUS_ACTION_SPEC,
|
|
max_step_complete=True,
|
|
)
|
|
run_out, final_value_out = optimizer.get_trajectory_value_estimates(
|
|
trajectory.to_agentbuffer(), trajectory.next_obs, done=False
|
|
)
|
|
for key, val in run_out.items():
|
|
assert type(key) is str
|
|
assert len(val) == 15
|
|
|
|
run_out, final_value_out = optimizer.get_trajectory_value_estimates(
|
|
trajectory.to_agentbuffer(), trajectory.next_obs, done=True
|
|
)
|
|
for key, val in final_value_out.items():
|
|
assert type(key) is str
|
|
assert val == 0.0
|
|
|
|
# Check if we ignore terminal states properly
|
|
optimizer.reward_signals["extrinsic"].use_terminal_states = False
|
|
run_out, final_value_out = optimizer.get_trajectory_value_estimates(
|
|
trajectory.to_agentbuffer(), trajectory.next_obs, done=False
|
|
)
|
|
for key, val in final_value_out.items():
|
|
assert type(key) is str
|
|
assert val != 0.0
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main()
|