Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

173 行
6.3 KiB

from abc import abstractmethod
from typing import Dict, List, Optional
import numpy as np
from mlagents_envs.base_env import DecisionSteps
from mlagents_envs.exception import UnityException
from mlagents.trainers.action_info import ActionInfo
from mlagents_envs.base_env import BehaviorSpec
from mlagents.trainers.settings import TrainerSettings, NetworkSettings
class UnityPolicyException(UnityException):
"""
Related to errors with the Trainer.
"""
pass
class Policy:
def __init__(
self,
seed: int,
behavior_spec: BehaviorSpec,
trainer_settings: TrainerSettings,
tanh_squash: bool = False,
reparameterize: bool = False,
condition_sigma_on_obs: bool = True,
):
self.behavior_spec = behavior_spec
self.trainer_settings = trainer_settings
self.network_settings: NetworkSettings = trainer_settings.network_settings
self.seed = seed
if (
self.behavior_spec.action_spec.continuous_size > 0
and self.behavior_spec.action_spec.discrete_size > 0
):
raise UnityPolicyException("Trainers do not support mixed action spaces.")
self.act_size = (
list(self.behavior_spec.action_spec.discrete_branches)
if self.behavior_spec.action_spec.is_discrete()
else [self.behavior_spec.action_spec.continuous_size]
)
self.vec_obs_size = sum(
shape[0] for shape in behavior_spec.observation_shapes if len(shape) == 1
)
self.vis_obs_size = sum(
1 for shape in behavior_spec.observation_shapes if len(shape) == 3
)
self.use_continuous_act = self.behavior_spec.action_spec.is_continuous()
self.previous_action_dict: Dict[str, Dict[str, np.ndarray]] = {}
self.memory_dict: Dict[str, np.ndarray] = {}
self.normalize = trainer_settings.network_settings.normalize
self.use_recurrent = self.network_settings.memory is not None
self.h_size = self.network_settings.hidden_units
num_layers = self.network_settings.num_layers
if num_layers < 1:
num_layers = 1
self.num_layers = num_layers
self.vis_encode_type = self.network_settings.vis_encode_type
self.tanh_squash = tanh_squash
self.reparameterize = reparameterize
self.condition_sigma_on_obs = condition_sigma_on_obs
self.m_size = 0
self.sequence_length = 1
if self.network_settings.memory is not None:
self.m_size = self.network_settings.memory.memory_size
self.sequence_length = self.network_settings.memory.sequence_length
# Non-exposed parameters; these aren't exposed because they don't have a
# good explanation and usually shouldn't be touched.
self.log_std_min = -20
self.log_std_max = 2
def make_empty_memory(self, num_agents):
"""
Creates empty memory for use with RNNs
:param num_agents: Number of agents.
:return: Numpy array of zeros.
"""
return np.zeros((num_agents, self.m_size), dtype=np.float32)
def save_memories(
self, agent_ids: List[str], memory_matrix: Optional[np.ndarray]
) -> None:
if memory_matrix is None:
return
for index, agent_id in enumerate(agent_ids):
self.memory_dict[agent_id] = memory_matrix[index, :]
def retrieve_memories(self, agent_ids: List[str]) -> np.ndarray:
memory_matrix = np.zeros((len(agent_ids), self.m_size), dtype=np.float32)
for index, agent_id in enumerate(agent_ids):
if agent_id in self.memory_dict:
memory_matrix[index, :] = self.memory_dict[agent_id]
return memory_matrix
def remove_memories(self, agent_ids):
for agent_id in agent_ids:
if agent_id in self.memory_dict:
self.memory_dict.pop(agent_id)
def make_empty_previous_action(self, num_agents: int) -> Dict[str, np.ndarray]:
"""
Creates empty previous action for use with RNNs and discrete control
:param num_agents: Number of agents.
:return: Dict of action type to np.ndarray
"""
act_dict: Dict[str, np.ndarray] = {}
action_tuple = self.behavior_spec.action_spec.empty_action(num_agents)
if self.behavior_spec.action_spec.continuous_size > 0:
act_dict["continuous_action"] = action_tuple.continuous
if self.behavior_spec.action_spec.discrete_size > 0:
act_dict["discrete_action"] = action_tuple.discrete
return act_dict
def save_previous_action(
self, agent_ids: List[str], action_dict: Dict[str, np.ndarray]
) -> None:
if action_dict is None:
return
for index, agent_id in enumerate(agent_ids):
agent_action_dict: Dict[str, np.ndarray] = {}
for act_type in action_dict:
agent_action_dict[act_type] = action_dict[act_type][index, :]
self.previous_action_dict[agent_id] = agent_action_dict
def retrieve_previous_action(self, agent_ids: List[str]) -> Dict[str, np.ndarray]:
action_dict = self.make_empty_previous_action(len(agent_ids))
for index, agent_id in enumerate(agent_ids):
if agent_id in self.previous_action_dict:
for act_type in action_dict:
action_dict[act_type][index, :] = self.previous_action_dict[
agent_id
][act_type]
return action_dict
def remove_previous_action(self, agent_ids):
for agent_id in agent_ids:
if agent_id in self.previous_action_dict:
self.previous_action_dict.pop(agent_id)
def get_action(
self, decision_requests: DecisionSteps, worker_id: int = 0
) -> ActionInfo:
raise NotImplementedError
@abstractmethod
def update_normalization(self, vector_obs: np.ndarray) -> None:
pass
@abstractmethod
def increment_step(self, n_steps):
pass
@abstractmethod
def get_current_step(self):
pass
@abstractmethod
def load_weights(self, values: List[np.ndarray]) -> None:
pass
@abstractmethod
def get_weights(self) -> List[np.ndarray]:
return []
@abstractmethod
def init_load_weights(self) -> None:
pass