您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
298 行
13 KiB
298 行
13 KiB
# # Unity ML Agents
|
|
# ## ML-Agent Learning (Imitation)
|
|
# Contains an implementation of Behavioral Cloning Algorithm
|
|
|
|
import logging
|
|
import os
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from unitytrainers.bc.models import BehavioralCloningModel
|
|
from unitytrainers.buffer import Buffer
|
|
from unitytrainers.trainer import UnityTrainerException, Trainer
|
|
|
|
logger = logging.getLogger("unityagents")
|
|
|
|
|
|
class BehavioralCloningTrainer(Trainer):
|
|
"""The ImitationTrainer is an implementation of the imitation learning."""
|
|
|
|
def __init__(self, sess, env, brain_name, trainer_parameters, training, seed):
|
|
"""
|
|
Responsible for collecting experiences and training PPO model.
|
|
:param sess: Tensorflow session.
|
|
:param env: The UnityEnvironment.
|
|
:param trainer_parameters: The parameters for the trainer (dictionary).
|
|
:param training: Whether the trainer is set for training.
|
|
"""
|
|
self.param_keys = ['brain_to_imitate', 'batch_size', 'time_horizon', 'graph_scope',
|
|
'summary_freq', 'max_steps', 'batches_per_epoch', 'use_recurrent', 'hidden_units',
|
|
'num_layers', 'sequence_length']
|
|
|
|
for k in self.param_keys:
|
|
if k not in trainer_parameters:
|
|
raise UnityTrainerException("The hyperparameter {0} could not be found for the Imitation trainer of "
|
|
"brain {1}.".format(k, brain_name))
|
|
|
|
super(BehavioralCloningTrainer, self).__init__(sess, env, brain_name, trainer_parameters, training)
|
|
|
|
self.variable_scope = trainer_parameters['graph_scope']
|
|
self.brain_to_imitate = trainer_parameters['brain_to_imitate']
|
|
self.batch_size = trainer_parameters['batch_size']
|
|
self.batches_per_epoch = trainer_parameters['batches_per_epoch']
|
|
self.use_recurrent = trainer_parameters['use_recurrent']
|
|
self.step = 0
|
|
self.sequence_length = 1
|
|
self.m_size = None
|
|
if self.use_recurrent:
|
|
self.m_size = env.brains[brain_name].memory_space_size
|
|
self.sequence_length = trainer_parameters["sequence_length"]
|
|
self.cumulative_rewards = {}
|
|
self.episode_steps = {}
|
|
self.stats = {'losses': [], 'episode_length': [], 'cumulative_reward': []}
|
|
|
|
self.training_buffer = Buffer()
|
|
self.is_continuous = (env.brains[brain_name].action_space_type == "continuous")
|
|
self.use_observations = (env.brains[brain_name].number_observations > 0)
|
|
if self.use_observations:
|
|
logger.info('Cannot use observations with imitation learning')
|
|
self.use_states = (env.brains[brain_name].state_space_size > 0)
|
|
self.summary_path = trainer_parameters['summary_path']
|
|
if not os.path.exists(self.summary_path):
|
|
os.makedirs(self.summary_path)
|
|
|
|
self.summary_writer = tf.summary.FileWriter(self.summary_path)
|
|
with tf.variable_scope(self.variable_scope):
|
|
tf.set_random_seed(seed)
|
|
self.model = BehavioralCloningModel(
|
|
h_size=int(trainer_parameters['hidden_units']),
|
|
lr=float(trainer_parameters['learning_rate']),
|
|
n_layers=int(trainer_parameters['num_layers']),
|
|
m_size=self.brain.memory_space_size,
|
|
normalize=False,
|
|
use_recurrent=trainer_parameters['use_recurrent'],
|
|
brain=self.brain)
|
|
|
|
def __str__(self):
|
|
|
|
return '''Hyperparameters for the Imitation Trainer of brain {0}: \n{1}'''.format(
|
|
self.brain_name, '\n'.join(['\t{0}:\t{1}'.format(x, self.trainer_parameters[x]) for x in self.param_keys]))
|
|
|
|
@property
|
|
def parameters(self):
|
|
"""
|
|
Returns the trainer parameters of the trainer.
|
|
"""
|
|
return self.trainer_parameters
|
|
|
|
@property
|
|
def graph_scope(self):
|
|
"""
|
|
Returns the graph scope of the trainer.
|
|
"""
|
|
return self.variable_scope
|
|
|
|
@property
|
|
def get_max_steps(self):
|
|
"""
|
|
Returns the maximum number of steps. Is used to know when the trainer should be stopped.
|
|
:return: The maximum number of steps of the trainer
|
|
"""
|
|
return float(self.trainer_parameters['max_steps'])
|
|
|
|
@property
|
|
def get_step(self):
|
|
"""
|
|
Returns the number of steps the trainer has performed
|
|
:return: the step count of the trainer
|
|
"""
|
|
return self.step
|
|
|
|
@property
|
|
def get_last_reward(self):
|
|
"""
|
|
Returns the last reward the trainer has had
|
|
:return: the new last reward
|
|
"""
|
|
if len(self.stats['cumulative_reward']) > 0:
|
|
return np.mean(self.stats['cumulative_reward'])
|
|
else:
|
|
return 0
|
|
|
|
def increment_step(self):
|
|
"""
|
|
Increment the step count of the trainer
|
|
"""
|
|
self.step += 1
|
|
|
|
def update_last_reward(self):
|
|
"""
|
|
Updates the last reward
|
|
"""
|
|
return
|
|
|
|
def take_action(self, all_brain_info):
|
|
"""
|
|
Decides actions given state/observation information, and takes them in environment.
|
|
:param info: Current BrainInfo from environment.
|
|
:return: a tupple containing action, memories, values and an object
|
|
to be passed to add experiences
|
|
"""
|
|
agent_brain = all_brain_info[self.brain_name]
|
|
feed_dict = {self.model.dropout_rate: 1.0, self.model.sequence_length: 1}
|
|
run_list = [self.model.sample_action]
|
|
if self.use_observations:
|
|
for i, _ in enumerate(agent_brain.observations):
|
|
feed_dict[self.model.observation_in[i]] = agent_brain.observations[i]
|
|
if self.use_states:
|
|
feed_dict[self.model.state_in] = agent_brain.states
|
|
if self.use_recurrent:
|
|
feed_dict[self.model.memory_in] = agent_brain.memories
|
|
run_list += [self.model.memory_out]
|
|
if self.use_recurrent:
|
|
agent_action, memories = self.sess.run(run_list, feed_dict)
|
|
return agent_action, memories, None, None
|
|
else:
|
|
agent_action = self.sess.run(run_list, feed_dict)
|
|
return agent_action, None, None, None
|
|
|
|
def add_experiences(self, info, next_info, take_action_outputs):
|
|
"""
|
|
Adds experiences to each agent's experience history.
|
|
:param info: Current BrainInfo.
|
|
:param next_info: Next BrainInfo.
|
|
:param take_action_outputs: The outputs of the take action method.
|
|
"""
|
|
info_expert = info[self.brain_to_imitate]
|
|
next_info_expert = next_info[self.brain_to_imitate]
|
|
for agent_id in info_expert.agents:
|
|
if agent_id in next_info_expert.agents:
|
|
idx = info_expert.agents.index(agent_id)
|
|
next_idx = next_info_expert.agents.index(agent_id)
|
|
if not info_expert.local_done[idx]:
|
|
if self.use_observations:
|
|
for i, _ in enumerate(info.observations):
|
|
self.training_buffer[agent_id]['observations%d' % i].append(info_expert.observations[i][idx])
|
|
if self.use_states:
|
|
self.training_buffer[agent_id]['states'].append(info_expert.states[idx])
|
|
if self.use_recurrent:
|
|
self.training_buffer[agent_id]['memory'].append(info_expert.memories[idx])
|
|
self.training_buffer[agent_id]['actions'].append(next_info_expert.previous_actions[next_idx])
|
|
|
|
info_student = next_info[self.brain_name]
|
|
next_info_student = next_info[self.brain_name]
|
|
for agent_id in info_student.agents:
|
|
idx = info_student.agents.index(agent_id)
|
|
next_idx = next_info_student.agents.index(agent_id)
|
|
if not info_student.local_done[idx]:
|
|
if agent_id not in self.cumulative_rewards:
|
|
self.cumulative_rewards[agent_id] = 0
|
|
self.cumulative_rewards[agent_id] += next_info_student.rewards[next_idx]
|
|
if agent_id not in self.episode_steps:
|
|
self.episode_steps[agent_id] = 0
|
|
self.episode_steps[agent_id] += 1
|
|
|
|
def process_experiences(self, info):
|
|
"""
|
|
Checks agent histories for processing condition, and processes them as necessary.
|
|
Processing involves calculating value and advantage targets for model updating step.
|
|
:param info: Current BrainInfo
|
|
"""
|
|
info_expert = info[self.brain_to_imitate]
|
|
for l in range(len(info_expert.agents)):
|
|
if ((info_expert.local_done[l] or
|
|
len(self.training_buffer[info_expert.agents[l]]['actions']) > self.trainer_parameters[
|
|
'time_horizon'])
|
|
and len(self.training_buffer[info_expert.agents[l]]['actions']) > 0):
|
|
agent_id = info_expert.agents[l]
|
|
self.training_buffer.append_update_buffer(agent_id, batch_size=None, training_length=self.sequence_length)
|
|
self.training_buffer[agent_id].reset_agent()
|
|
|
|
info_student = info[self.brain_name]
|
|
for l in range(len(info_student.agents)):
|
|
if info_student.local_done[l]:
|
|
agent_id = info_student.agents[l]
|
|
self.stats['cumulative_reward'].append(self.cumulative_rewards[agent_id])
|
|
self.stats['episode_length'].append(self.episode_steps[agent_id])
|
|
self.cumulative_rewards[agent_id] = 0
|
|
self.episode_steps[agent_id] = 0
|
|
|
|
def end_episode(self):
|
|
"""
|
|
A signal that the Episode has ended. The buffer must be reset.
|
|
Get only called when the academy resets.
|
|
"""
|
|
self.training_buffer.reset_all()
|
|
for agent_id in self.cumulative_rewards:
|
|
self.cumulative_rewards[agent_id] = 0
|
|
for agent_id in self.episode_steps:
|
|
self.episode_steps[agent_id] = 0
|
|
|
|
def is_ready_update(self):
|
|
"""
|
|
Returns whether or not the trainer has enough elements to run update model
|
|
:return: A boolean corresponding to whether or not update_model() can be run
|
|
"""
|
|
return len(self.training_buffer.update_buffer['actions']) > self.batch_size
|
|
|
|
def update_model(self):
|
|
"""
|
|
Uses training_buffer to update model.
|
|
"""
|
|
batch_size = self.trainer_parameters['batch_size']
|
|
|
|
self.training_buffer.update_buffer.shuffle()
|
|
batch_losses = []
|
|
for j in range(
|
|
min(len(self.training_buffer.update_buffer['actions']) // self.batch_size, self.batches_per_epoch)):
|
|
_buffer = self.training_buffer.update_buffer
|
|
start = j * batch_size
|
|
end = (j + 1) * batch_size
|
|
batch_states = np.array(_buffer['states'][start:end])
|
|
batch_actions = np.array(_buffer['actions'][start:end])
|
|
feed_dict = {self.model.true_action: batch_actions.reshape([-1, self.brain.action_space_size]),
|
|
self.model.dropout_rate: 0.5,
|
|
self.model.batch_size: batch_size,
|
|
self.model.sequence_length: self.sequence_length}
|
|
if not self.is_continuous:
|
|
feed_dict[self.model.state_in] = batch_states.reshape([-1, 1])
|
|
else:
|
|
feed_dict[self.model.state_in] = batch_states.reshape([-1, self.brain.state_space_size *
|
|
self.brain.stacked_states])
|
|
if self.use_observations:
|
|
for i, _ in enumerate(self.model.observation_in):
|
|
_obs = np.array(_buffer['observations%d' % i][start:end])
|
|
(_batch, _seq, _w, _h, _c) = _obs.shape
|
|
feed_dict[self.model.observation_in[i]] = _obs.reshape([-1, _w, _h, _c])
|
|
if self.use_recurrent:
|
|
feed_dict[self.model.memory_in] = np.zeros([batch_size, self.m_size])
|
|
|
|
loss, _ = self.sess.run([self.model.loss, self.model.update], feed_dict=feed_dict)
|
|
batch_losses.append(loss)
|
|
if len(batch_losses) > 0:
|
|
self.stats['losses'].append(np.mean(batch_losses))
|
|
else:
|
|
self.stats['losses'].append(0)
|
|
|
|
def write_summary(self, lesson_number):
|
|
"""
|
|
Saves training statistics to Tensorboard.
|
|
:param lesson_number: The lesson the trainer is at.
|
|
"""
|
|
if (self.get_step % self.trainer_parameters['summary_freq'] == 0 and self.get_step != 0 and
|
|
self.is_training and self.get_step <= self.get_max_steps):
|
|
steps = self.get_step
|
|
if len(self.stats['cumulative_reward']) > 0:
|
|
mean_reward = np.mean(self.stats['cumulative_reward'])
|
|
logger.info("{0} : Step: {1}. Mean Reward: {2}. Std of Reward: {3}."
|
|
.format(self.brain_name, steps, mean_reward, np.std(self.stats['cumulative_reward'])))
|
|
summary = tf.Summary()
|
|
for key in self.stats:
|
|
if len(self.stats[key]) > 0:
|
|
stat_mean = float(np.mean(self.stats[key]))
|
|
summary.value.add(tag='Info/{}'.format(key), simple_value=stat_mean)
|
|
self.stats[key] = []
|
|
summary.value.add(tag='Info/Lesson', simple_value=lesson_number)
|
|
self.summary_writer.add_summary(summary, steps)
|
|
self.summary_writer.flush()
|