Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

150 行
5.6 KiB

using NUnit.Framework;
using UnityEngine;
using System.IO.Abstractions.TestingHelpers;
using System.Reflection;
using MLAgents.CommunicatorObjects;
using MLAgents.Sensors;
using MLAgents.Demonstrations;
using MLAgents.Policies;
namespace MLAgents.Tests
{
[TestFixture]
public class DemonstrationTests
{
const string k_DemoDirectory = "Assets/Demonstrations/";
const string k_ExtensionType = ".demo";
const string k_DemoName = "Test";
[SetUp]
public void SetUp()
{
if (Academy.IsInitialized)
{
Academy.Instance.Dispose();
}
}
[Test]
public void TestSanitization()
{
const string dirtyString = "abc1234567&!@";
const string knownCleanString = "abc123";
var cleanString = DemonstrationRecorder.SanitizeName(dirtyString, 6);
Assert.AreNotEqual(dirtyString, cleanString);
Assert.AreEqual(cleanString, knownCleanString);
}
[Test]
public void TestStoreInitialize()
{
var fileSystem = new MockFileSystem();
var gameobj = new GameObject("gameObj");
var bp = gameobj.AddComponent<BehaviorParameters>();
bp.BrainParameters.VectorObservationSize = 3;
bp.BrainParameters.NumStackedVectorObservations = 2;
bp.BrainParameters.VectorActionDescriptions = new[] { "TestActionA", "TestActionB" };
bp.BrainParameters.VectorActionSize = new[] { 2, 2 };
bp.BrainParameters.VectorActionSpaceType = SpaceType.Discrete;
var agent = gameobj.AddComponent<TestAgent>();
Assert.IsFalse(fileSystem.Directory.Exists(k_DemoDirectory));
var demoRec = gameobj.AddComponent<DemonstrationRecorder>();
demoRec.Record = true;
demoRec.DemonstrationName = k_DemoName;
demoRec.DemonstrationDirectory = k_DemoDirectory;
var demoWriter = demoRec.LazyInitialize(fileSystem);
Assert.IsTrue(fileSystem.Directory.Exists(k_DemoDirectory));
Assert.IsTrue(fileSystem.FileExists(k_DemoDirectory + k_DemoName + k_ExtensionType));
var agentInfo = new AgentInfo
{
reward = 1f,
discreteActionMasks = new[] { false, true },
done = true,
episodeId = 5,
maxStepReached = true,
storedVectorActions = new[] { 0f, 1f },
};
demoWriter.Record(agentInfo, new System.Collections.Generic.List<ISensor>());
demoRec.Close();
// Make sure close can be called multiple times
demoWriter.Close();
demoRec.Close();
// Make sure trying to write after closing doesn't raise an error.
demoWriter.Record(agentInfo, new System.Collections.Generic.List<ISensor>());
}
public class ObservationAgent : TestAgent
{
public override void CollectObservations(VectorSensor sensor)
{
collectObservationsCalls += 1;
sensor.AddObservation(1f);
sensor.AddObservation(2f);
sensor.AddObservation(3f);
}
}
[Test]
public void TestAgentWrite()
{
var agentGo1 = new GameObject("TestAgent");
var bpA = agentGo1.AddComponent<BehaviorParameters>();
bpA.BrainParameters.VectorObservationSize = 3;
bpA.BrainParameters.NumStackedVectorObservations = 1;
bpA.BrainParameters.VectorActionDescriptions = new[] { "TestActionA", "TestActionB" };
bpA.BrainParameters.VectorActionSize = new[] { 2, 2 };
bpA.BrainParameters.VectorActionSpaceType = SpaceType.Discrete;
agentGo1.AddComponent<ObservationAgent>();
var agent1 = agentGo1.GetComponent<ObservationAgent>();
agentGo1.AddComponent<DemonstrationRecorder>();
var demoRecorder = agentGo1.GetComponent<DemonstrationRecorder>();
var fileSystem = new MockFileSystem();
demoRecorder.DemonstrationDirectory = k_DemoDirectory;
demoRecorder.DemonstrationName = "TestBrain";
demoRecorder.Record = true;
demoRecorder.LazyInitialize(fileSystem);
var agentEnableMethod = typeof(Agent).GetMethod("OnEnable",
BindingFlags.Instance | BindingFlags.NonPublic);
var agentSendInfo = typeof(Agent).GetMethod("SendInfo",
BindingFlags.Instance | BindingFlags.NonPublic);
agentEnableMethod?.Invoke(agent1, new object[] {});
// Step the agent
agent1.RequestDecision();
agentSendInfo?.Invoke(agent1, new object[] {});
demoRecorder.Close();
// Read back the demo file and make sure observations were written
var reader = fileSystem.File.OpenRead("Assets/Demonstrations/TestBrain.demo");
reader.Seek(DemonstrationWriter.MetaDataBytes + 1, 0);
BrainParametersProto.Parser.ParseDelimitedFrom(reader);
var agentInfoProto = AgentInfoActionPairProto.Parser.ParseDelimitedFrom(reader).AgentInfo;
var obs = agentInfoProto.Observations[2]; // skip dummy sensors
{
var vecObs = obs.FloatData.Data;
Assert.AreEqual(bpA.BrainParameters.VectorObservationSize, vecObs.Count);
for (var i = 0; i < vecObs.Count; i++)
{
Assert.AreEqual((float)i + 1, vecObs[i]);
}
}
}
}
}