Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

61 行
1.7 KiB

import numpy as np
import pytest
from mlagents.trainers.trajectory import SplitObservations
from mlagents.trainers.tests.mock_brain import make_fake_trajectory
from mlagents_envs.base_env import ActionSpec
VEC_OBS_SIZE = 6
ACTION_SIZE = 4
@pytest.mark.parametrize("num_visual_obs", [0, 1, 2])
@pytest.mark.parametrize("num_vec_obs", [0, 1])
def test_split_obs(num_visual_obs, num_vec_obs):
obs = []
for _ in range(num_visual_obs):
obs.append(np.ones((84, 84, 3), dtype=np.float32))
for _ in range(num_vec_obs):
obs.append(np.ones(VEC_OBS_SIZE, dtype=np.float32))
split_observations = SplitObservations.from_observations(obs)
if num_vec_obs == 1:
assert len(split_observations.vector_observations) == VEC_OBS_SIZE
else:
assert len(split_observations.vector_observations) == 0
# Assert the number of vector observations.
assert len(split_observations.visual_observations) == num_visual_obs
def test_trajectory_to_agentbuffer():
length = 15
wanted_keys = [
"next_visual_obs0",
"visual_obs0",
"vector_obs",
"next_vector_in",
"memory",
"masks",
"done",
"actions_pre",
"continuous_action",
"action_probs",
"action_mask",
"prev_continuous_action",
"environment_rewards",
]
wanted_keys = set(wanted_keys)
trajectory = make_fake_trajectory(
length=length,
observation_shapes=[(VEC_OBS_SIZE,), (84, 84, 3)],
action_spec=ActionSpec.create_continuous(ACTION_SIZE),
)
agentbuffer = trajectory.to_agentbuffer()
seen_keys = set()
for key, field in agentbuffer.items():
assert len(field) == length
seen_keys.add(key)
assert seen_keys == wanted_keys