Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

187 行
6.8 KiB

from typing import *
import cloudpickle
from mlagents.envs import UnityEnvironment
from multiprocessing import Process, Pipe
from multiprocessing.connection import Connection
from mlagents.envs.base_unity_environment import BaseUnityEnvironment
from mlagents.envs.env_manager import EnvManager, StepInfo
from mlagents.envs.timers import timed, hierarchical_timer
from mlagents.envs import AllBrainInfo, BrainParameters, ActionInfo
class EnvironmentCommand(NamedTuple):
name: str
payload: Any = None
class EnvironmentResponse(NamedTuple):
name: str
worker_id: int
payload: Any
class UnityEnvWorker:
def __init__(self, process: Process, worker_id: int, conn: Connection):
self.process = process
self.worker_id = worker_id
self.conn = conn
self.previous_step: StepInfo = StepInfo(None, {}, None)
self.previous_all_action_info: Dict[str, ActionInfo] = {}
def send(self, name: str, payload=None):
try:
cmd = EnvironmentCommand(name, payload)
self.conn.send(cmd)
except (BrokenPipeError, EOFError):
raise KeyboardInterrupt
def recv(self) -> EnvironmentResponse:
try:
response: EnvironmentResponse = self.conn.recv()
return response
except (BrokenPipeError, EOFError):
raise KeyboardInterrupt
def close(self):
try:
self.conn.send(EnvironmentCommand("close"))
except (BrokenPipeError, EOFError):
pass
self.process.join()
def worker(parent_conn: Connection, pickled_env_factory: str, worker_id: int):
env_factory: Callable[[int], UnityEnvironment] = cloudpickle.loads(
pickled_env_factory
)
env = env_factory(worker_id)
def _send_response(cmd_name, payload):
parent_conn.send(EnvironmentResponse(cmd_name, worker_id, payload))
try:
while True:
cmd: EnvironmentCommand = parent_conn.recv()
if cmd.name == "step":
all_action_info = cmd.payload
if env.global_done:
all_brain_info = env.reset()
else:
actions = {}
memories = {}
texts = {}
values = {}
for brain_name, action_info in all_action_info.items():
actions[brain_name] = action_info.action
memories[brain_name] = action_info.memory
texts[brain_name] = action_info.text
values[brain_name] = action_info.value
all_brain_info = env.step(actions, memories, texts, values)
_send_response("step", all_brain_info)
elif cmd.name == "external_brains":
_send_response("external_brains", env.external_brains)
elif cmd.name == "reset_parameters":
_send_response("reset_parameters", env.reset_parameters)
elif cmd.name == "reset":
all_brain_info = env.reset(
cmd.payload[0], cmd.payload[1], cmd.payload[2]
)
_send_response("reset", all_brain_info)
elif cmd.name == "global_done":
_send_response("global_done", env.global_done)
elif cmd.name == "close":
break
except KeyboardInterrupt:
print("UnityEnvironment worker: keyboard interrupt")
finally:
env.close()
class SubprocessEnvManager(EnvManager):
def __init__(
self, env_factory: Callable[[int], BaseUnityEnvironment], n_env: int = 1
):
super().__init__()
self.env_workers: List[UnityEnvWorker] = []
for worker_idx in range(n_env):
self.env_workers.append(self.create_worker(worker_idx, env_factory))
def get_last_steps(self):
return [ew.previous_step for ew in self.env_workers]
@staticmethod
def create_worker(
worker_id: int, env_factory: Callable[[int], BaseUnityEnvironment]
) -> UnityEnvWorker:
parent_conn, child_conn = Pipe()
# Need to use cloudpickle for the env factory function since function objects aren't picklable
# on Windows as of Python 3.6.
pickled_env_factory = cloudpickle.dumps(env_factory)
child_process = Process(
target=worker, args=(child_conn, pickled_env_factory, worker_id)
)
child_process.start()
return UnityEnvWorker(child_process, worker_id, parent_conn)
def step(self) -> List[StepInfo]:
for env_worker in self.env_workers:
all_action_info = self._take_step(env_worker.previous_step)
env_worker.previous_all_action_info = all_action_info
env_worker.send("step", all_action_info)
with hierarchical_timer("recv"):
step_brain_infos: List[AllBrainInfo] = [
self.env_workers[i].recv().payload for i in range(len(self.env_workers))
]
steps = []
for i in range(len(step_brain_infos)):
env_worker = self.env_workers[i]
step_info = StepInfo(
env_worker.previous_step.current_all_brain_info,
step_brain_infos[i],
env_worker.previous_all_action_info,
)
env_worker.previous_step = step_info
steps.append(step_info)
return steps
def reset(
self, config=None, train_mode=True, custom_reset_parameters=None
) -> List[StepInfo]:
self._broadcast_message("reset", (config, train_mode, custom_reset_parameters))
reset_results = [
self.env_workers[i].recv().payload for i in range(len(self.env_workers))
]
for i in range(len(reset_results)):
env_worker = self.env_workers[i]
env_worker.previous_step = StepInfo(None, reset_results[i], None)
return list(map(lambda ew: ew.previous_step, self.env_workers))
@property
def external_brains(self) -> Dict[str, BrainParameters]:
self.env_workers[0].send("external_brains")
return self.env_workers[0].recv().payload
@property
def reset_parameters(self) -> Dict[str, float]:
self.env_workers[0].send("reset_parameters")
return self.env_workers[0].recv().payload
def close(self):
for env in self.env_workers:
env.close()
def _broadcast_message(self, name: str, payload=None):
for env in self.env_workers:
env.send(name, payload)
@timed
def _take_step(self, last_step: StepInfo) -> Dict[str, ActionInfo]:
all_action_info: Dict[str, ActionInfo] = {}
for brain_name, brain_info in last_step.current_all_brain_info.items():
all_action_info[brain_name] = self.policies[brain_name].get_action(
brain_info
)
return all_action_info