您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
113 行
3.8 KiB
113 行
3.8 KiB
import pytest
|
|
from mlagents.torch_utils import torch
|
|
|
|
from mlagents.trainers.buffer import BufferKey, RewardSignalUtil
|
|
from mlagents.trainers.sac.optimizer_torch import TorchSACOptimizer
|
|
from mlagents.trainers.policy.torch_policy import TorchPolicy
|
|
from mlagents.trainers.tests import mock_brain as mb
|
|
from mlagents.trainers.settings import NetworkSettings
|
|
from mlagents.trainers.tests.dummy_config import ( # noqa: F401
|
|
sac_dummy_config,
|
|
curiosity_dummy_config,
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def dummy_config():
|
|
return sac_dummy_config()
|
|
|
|
|
|
VECTOR_ACTION_SPACE = 2
|
|
VECTOR_OBS_SPACE = 8
|
|
DISCRETE_ACTION_SPACE = [3, 3, 3, 2]
|
|
BUFFER_INIT_SAMPLES = 64
|
|
NUM_AGENTS = 12
|
|
|
|
|
|
def create_sac_optimizer_mock(dummy_config, use_rnn, use_discrete, use_visual):
|
|
mock_brain = mb.setup_test_behavior_specs(
|
|
use_discrete,
|
|
use_visual,
|
|
vector_action_space=DISCRETE_ACTION_SPACE
|
|
if use_discrete
|
|
else VECTOR_ACTION_SPACE,
|
|
vector_obs_space=VECTOR_OBS_SPACE if not use_visual else 0,
|
|
)
|
|
trainer_settings = dummy_config
|
|
trainer_settings.network_settings.memory = (
|
|
NetworkSettings.MemorySettings(sequence_length=16, memory_size=12)
|
|
if use_rnn
|
|
else None
|
|
)
|
|
policy = TorchPolicy(0, mock_brain, trainer_settings, "test", False)
|
|
optimizer = TorchSACOptimizer(policy, trainer_settings)
|
|
return optimizer
|
|
|
|
|
|
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
|
|
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
|
|
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
|
|
def test_sac_optimizer_update(dummy_config, rnn, visual, discrete):
|
|
torch.manual_seed(0)
|
|
# Test evaluate
|
|
optimizer = create_sac_optimizer_mock(
|
|
dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual
|
|
)
|
|
# Test update
|
|
update_buffer = mb.simulate_rollout(
|
|
BUFFER_INIT_SAMPLES, optimizer.policy.behavior_spec, memory_size=12
|
|
)
|
|
# Mock out reward signal eval
|
|
update_buffer[RewardSignalUtil.rewards_key("extrinsic")] = update_buffer[
|
|
BufferKey.ENVIRONMENT_REWARDS
|
|
]
|
|
return_stats = optimizer.update(
|
|
update_buffer,
|
|
num_sequences=update_buffer.num_experiences // optimizer.policy.sequence_length,
|
|
)
|
|
# Make sure we have the right stats
|
|
required_stats = [
|
|
"Losses/Policy Loss",
|
|
"Losses/Value Loss",
|
|
"Losses/Q1 Loss",
|
|
"Losses/Q2 Loss",
|
|
"Policy/Continuous Entropy Coeff",
|
|
"Policy/Discrete Entropy Coeff",
|
|
"Policy/Learning Rate",
|
|
]
|
|
for stat in required_stats:
|
|
assert stat in return_stats.keys()
|
|
|
|
|
|
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
|
|
def test_sac_update_reward_signals(
|
|
dummy_config, curiosity_dummy_config, discrete # noqa: F811
|
|
):
|
|
# Add a Curiosity module
|
|
dummy_config.reward_signals = curiosity_dummy_config
|
|
optimizer = create_sac_optimizer_mock(
|
|
dummy_config, use_rnn=False, use_discrete=discrete, use_visual=False
|
|
)
|
|
|
|
# Test update, while removing PPO-specific buffer elements.
|
|
update_buffer = mb.simulate_rollout(
|
|
BUFFER_INIT_SAMPLES, optimizer.policy.behavior_spec
|
|
)
|
|
|
|
# Mock out reward signal eval
|
|
update_buffer[RewardSignalUtil.rewards_key("extrinsic")] = update_buffer[
|
|
BufferKey.ENVIRONMENT_REWARDS
|
|
]
|
|
update_buffer[RewardSignalUtil.rewards_key("curiosity")] = update_buffer[
|
|
BufferKey.ENVIRONMENT_REWARDS
|
|
]
|
|
return_stats = optimizer.update_reward_signals(
|
|
{"curiosity": update_buffer}, num_sequences=update_buffer.num_experiences
|
|
)
|
|
required_stats = ["Losses/Curiosity Forward Loss", "Losses/Curiosity Inverse Loss"]
|
|
for stat in required_stats:
|
|
assert stat in return_stats.keys()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main()
|