您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
345 行
18 KiB
345 行
18 KiB
import logging
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
import tensorflow.contrib.layers as c_layers
|
|
|
|
logger = logging.getLogger("mlagents.envs")
|
|
|
|
|
|
class LearningModel(object):
|
|
def __init__(self, m_size, normalize, use_recurrent, brain):
|
|
self.brain = brain
|
|
self.vector_in = None
|
|
self.normalize = False
|
|
self.use_recurrent = False
|
|
self.global_step, self.increment_step = self.create_global_steps()
|
|
self.visual_in = []
|
|
self.batch_size = tf.placeholder(shape=None, dtype=tf.int32, name='batch_size')
|
|
self.sequence_length = tf.placeholder(shape=None, dtype=tf.int32, name='sequence_length')
|
|
self.mask_input = tf.placeholder(shape=[None], dtype=tf.float32, name='masks')
|
|
self.mask = tf.cast(self.mask_input, tf.int32)
|
|
self.m_size = m_size
|
|
self.normalize = normalize
|
|
self.use_recurrent = use_recurrent
|
|
self.a_size = brain.vector_action_space_size
|
|
self.o_size = brain.vector_observation_space_size * brain.num_stacked_vector_observations
|
|
self.v_size = brain.number_visual_observations
|
|
|
|
@staticmethod
|
|
def create_global_steps():
|
|
"""Creates TF ops to track and increment global training step."""
|
|
global_step = tf.Variable(0, name="global_step", trainable=False, dtype=tf.int32)
|
|
increment_step = tf.assign(global_step, tf.add(global_step, 1))
|
|
return global_step, increment_step
|
|
|
|
@staticmethod
|
|
def swish(input_activation):
|
|
"""Swish activation function. For more info: https://arxiv.org/abs/1710.05941"""
|
|
return tf.multiply(input_activation, tf.nn.sigmoid(input_activation))
|
|
|
|
@staticmethod
|
|
def create_visual_input(camera_parameters, name):
|
|
"""
|
|
Creates image input op.
|
|
:param camera_parameters: Parameters for visual observation from BrainInfo.
|
|
:param name: Desired name of input op.
|
|
:return: input op.
|
|
"""
|
|
o_size_h = camera_parameters['height']
|
|
o_size_w = camera_parameters['width']
|
|
bw = camera_parameters['blackAndWhite']
|
|
|
|
if bw:
|
|
c_channels = 1
|
|
else:
|
|
c_channels = 3
|
|
|
|
visual_in = tf.placeholder(shape=[None, o_size_h, o_size_w, c_channels], dtype=tf.float32, name=name)
|
|
return visual_in
|
|
|
|
def create_vector_input(self, name='vector_observation'):
|
|
"""
|
|
Creates ops for vector observation input.
|
|
:param name: Name of the placeholder op.
|
|
:param o_size: Size of stacked vector observation.
|
|
:return:
|
|
"""
|
|
self.vector_in = tf.placeholder(shape=[None, self.o_size], dtype=tf.float32, name=name)
|
|
if self.normalize:
|
|
self.running_mean = tf.get_variable("running_mean", [self.o_size], trainable=False, dtype=tf.float32,
|
|
initializer=tf.zeros_initializer())
|
|
self.running_variance = tf.get_variable("running_variance", [self.o_size], trainable=False,
|
|
dtype=tf.float32, initializer=tf.ones_initializer())
|
|
self.update_mean, self.update_variance = self.create_normalizer_update(self.vector_in)
|
|
|
|
self.normalized_state = tf.clip_by_value((self.vector_in - self.running_mean) / tf.sqrt(
|
|
self.running_variance / (tf.cast(self.global_step, tf.float32) + 1)), -5, 5,
|
|
name="normalized_state")
|
|
return self.normalized_state
|
|
else:
|
|
return self.vector_in
|
|
|
|
def create_normalizer_update(self, vector_input):
|
|
mean_current_observation = tf.reduce_mean(vector_input, axis=0)
|
|
new_mean = self.running_mean + (mean_current_observation - self.running_mean) / \
|
|
tf.cast(self.global_step + 1, tf.float32)
|
|
new_variance = self.running_variance + (mean_current_observation - new_mean) * \
|
|
(mean_current_observation - self.running_mean)
|
|
update_mean = tf.assign(self.running_mean, new_mean)
|
|
update_variance = tf.assign(self.running_variance, new_variance)
|
|
return update_mean, update_variance
|
|
|
|
@staticmethod
|
|
def create_vector_observation_encoder(observation_input, h_size, activation, num_layers, scope, reuse):
|
|
"""
|
|
Builds a set of hidden state encoders.
|
|
:param reuse: Whether to re-use the weights within the same scope.
|
|
:param scope: Graph scope for the encoder ops.
|
|
:param observation_input: Input vector.
|
|
:param h_size: Hidden layer size.
|
|
:param activation: What type of activation function to use for layers.
|
|
:param num_layers: number of hidden layers to create.
|
|
:return: List of hidden layer tensors.
|
|
"""
|
|
with tf.variable_scope(scope):
|
|
hidden = observation_input
|
|
for i in range(num_layers):
|
|
hidden = tf.layers.dense(hidden, h_size, activation=activation, reuse=reuse, name="hidden_{}".format(i),
|
|
kernel_initializer=c_layers.variance_scaling_initializer(1.0))
|
|
return hidden
|
|
|
|
def create_visual_observation_encoder(self, image_input, h_size, activation, num_layers, scope, reuse):
|
|
"""
|
|
Builds a set of visual (CNN) encoders.
|
|
:param reuse: Whether to re-use the weights within the same scope.
|
|
:param scope: The scope of the graph within which to create the ops.
|
|
:param image_input: The placeholder for the image input to use.
|
|
:param h_size: Hidden layer size.
|
|
:param activation: What type of activation function to use for layers.
|
|
:param num_layers: number of hidden layers to create.
|
|
:return: List of hidden layer tensors.
|
|
"""
|
|
with tf.variable_scope(scope):
|
|
conv1 = tf.layers.conv2d(image_input, 16, kernel_size=[8, 8], strides=[4, 4],
|
|
activation=tf.nn.elu, reuse=reuse, name="conv_1")
|
|
conv2 = tf.layers.conv2d(conv1, 32, kernel_size=[4, 4], strides=[2, 2],
|
|
activation=tf.nn.elu, reuse=reuse, name="conv_2")
|
|
hidden = c_layers.flatten(conv2)
|
|
|
|
with tf.variable_scope(scope+'/'+'flat_encoding'):
|
|
hidden_flat = self.create_vector_observation_encoder(hidden, h_size, activation,
|
|
num_layers, scope, reuse)
|
|
return hidden_flat
|
|
|
|
@staticmethod
|
|
def create_discrete_action_masking_layer(all_logits, action_masks, action_size):
|
|
"""
|
|
Creates a masking layer for the discrete actions
|
|
:param all_logits: The concatenated unnormalized action probabilities for all branches
|
|
:param action_masks: The mask for the logits. Must be of dimension [None x total_number_of_action]
|
|
:param action_size: A list containing the number of possible actions for each branch
|
|
:return: The action output dimension [batch_size, num_branches] and the concatenated normalized logits
|
|
"""
|
|
action_idx = [0] + list(np.cumsum(action_size))
|
|
branches_logits = [all_logits[:, action_idx[i]:action_idx[i + 1]] for i in range(len(action_size))]
|
|
|
|
branch_masks = [action_masks[:, action_idx[i]:action_idx[i + 1]] for i in range(len(action_size))]
|
|
raw_probs = [tf.multiply(tf.nn.softmax(branches_logits[k]), branch_masks[k]) + (1-branch_masks[k])*1.0e-10
|
|
for k in range(len(action_size))]
|
|
normalized_probs = [tf.divide(raw_probs[k], tf.reduce_sum(raw_probs[k], axis=1, keepdims=True))
|
|
for k in range(len(action_size))]
|
|
output = tf.concat([tf.multinomial(tf.log(normalized_probs[k]), 1) for k in range(len(action_size))], axis=1)
|
|
return output, tf.concat([tf.log(normalized_probs[k]) for k in range(len(action_size))], axis=1)
|
|
|
|
def create_observation_streams(self, num_streams, h_size, num_layers):
|
|
"""
|
|
Creates encoding stream for observations.
|
|
:param num_streams: Number of streams to create.
|
|
:param h_size: Size of hidden linear layers in stream.
|
|
:param num_layers: Number of hidden linear layers in stream.
|
|
:return: List of encoded streams.
|
|
"""
|
|
brain = self.brain
|
|
activation_fn = self.swish
|
|
|
|
self.visual_in = []
|
|
for i in range(brain.number_visual_observations):
|
|
visual_input = self.create_visual_input(brain.camera_resolutions[i], name="visual_observation_" + str(i))
|
|
self.visual_in.append(visual_input)
|
|
vector_observation_input = self.create_vector_input()
|
|
|
|
final_hiddens = []
|
|
for i in range(num_streams):
|
|
visual_encoders = []
|
|
hidden_state, hidden_visual = None, None
|
|
if self.v_size > 0:
|
|
for j in range(brain.number_visual_observations):
|
|
encoded_visual = self.create_visual_observation_encoder(self.visual_in[j], h_size,
|
|
activation_fn, num_layers,
|
|
"main_graph_{}_encoder{}"
|
|
.format(i, j), False)
|
|
visual_encoders.append(encoded_visual)
|
|
hidden_visual = tf.concat(visual_encoders, axis=1)
|
|
if brain.vector_observation_space_size > 0:
|
|
hidden_state = self.create_vector_observation_encoder(vector_observation_input,
|
|
h_size, activation_fn, num_layers,
|
|
"main_graph_{}".format(i), False)
|
|
if hidden_state is not None and hidden_visual is not None:
|
|
final_hidden = tf.concat([hidden_visual, hidden_state], axis=1)
|
|
elif hidden_state is None and hidden_visual is not None:
|
|
final_hidden = hidden_visual
|
|
elif hidden_state is not None and hidden_visual is None:
|
|
final_hidden = hidden_state
|
|
else:
|
|
raise Exception("No valid network configuration possible. "
|
|
"There are no states or observations in this brain")
|
|
final_hiddens.append(final_hidden)
|
|
return final_hiddens
|
|
|
|
@staticmethod
|
|
def create_recurrent_encoder(input_state, memory_in, sequence_length, name='lstm'):
|
|
"""
|
|
Builds a recurrent encoder for either state or observations (LSTM).
|
|
:param sequence_length: Length of sequence to unroll.
|
|
:param input_state: The input tensor to the LSTM cell.
|
|
:param memory_in: The input memory to the LSTM cell.
|
|
:param name: The scope of the LSTM cell.
|
|
"""
|
|
s_size = input_state.get_shape().as_list()[1]
|
|
m_size = memory_in.get_shape().as_list()[1]
|
|
lstm_input_state = tf.reshape(input_state, shape=[-1, sequence_length, s_size])
|
|
memory_in = tf.reshape(memory_in[:, :], [-1, m_size])
|
|
_half_point = int(m_size / 2)
|
|
with tf.variable_scope(name):
|
|
rnn_cell = tf.contrib.rnn.BasicLSTMCell(_half_point)
|
|
lstm_vector_in = tf.contrib.rnn.LSTMStateTuple(memory_in[:, :_half_point], memory_in[:, _half_point:])
|
|
recurrent_output, lstm_state_out = tf.nn.dynamic_rnn(rnn_cell, lstm_input_state,
|
|
initial_state=lstm_vector_in)
|
|
|
|
recurrent_output = tf.reshape(recurrent_output, shape=[-1, _half_point])
|
|
return recurrent_output, tf.concat([lstm_state_out.c, lstm_state_out.h], axis=1)
|
|
|
|
def create_cc_actor_critic(self, h_size, num_layers):
|
|
"""
|
|
Creates Continuous control actor-critic model.
|
|
:param h_size: Size of hidden linear layers.
|
|
:param num_layers: Number of hidden linear layers.
|
|
"""
|
|
hidden_streams = self.create_observation_streams(2, h_size, num_layers)
|
|
|
|
if self.use_recurrent:
|
|
tf.Variable(self.m_size, name="memory_size", trainable=False, dtype=tf.int32)
|
|
self.memory_in = tf.placeholder(shape=[None, self.m_size], dtype=tf.float32, name='recurrent_in')
|
|
_half_point = int(self.m_size / 2)
|
|
hidden_policy, memory_policy_out = self.create_recurrent_encoder(
|
|
hidden_streams[0], self.memory_in[:, :_half_point], self.sequence_length, name='lstm_policy')
|
|
|
|
hidden_value, memory_value_out = self.create_recurrent_encoder(
|
|
hidden_streams[1], self.memory_in[:, _half_point:], self.sequence_length, name='lstm_value')
|
|
self.memory_out = tf.concat([memory_policy_out, memory_value_out], axis=1, name='recurrent_out')
|
|
else:
|
|
hidden_policy = hidden_streams[0]
|
|
hidden_value = hidden_streams[1]
|
|
|
|
mu = tf.layers.dense(hidden_policy, self.a_size[0], activation=None,
|
|
kernel_initializer=c_layers.variance_scaling_initializer(factor=0.01))
|
|
|
|
log_sigma_sq = tf.get_variable("log_sigma_squared", [self.a_size[0]], dtype=tf.float32,
|
|
initializer=tf.zeros_initializer())
|
|
|
|
sigma_sq = tf.exp(log_sigma_sq)
|
|
|
|
epsilon = tf.random_normal(tf.shape(mu), dtype=tf.float32)
|
|
|
|
# Clip and scale output to ensure actions are always within [-1, 1] range.
|
|
self.output_pre = mu + tf.sqrt(sigma_sq) * epsilon
|
|
output_post = tf.clip_by_value(self.output_pre, -3, 3) / 3
|
|
self.output = tf.identity(output_post, name='action')
|
|
self.selected_actions = tf.stop_gradient(output_post)
|
|
|
|
# Compute probability of model output.
|
|
all_probs = - 0.5 * tf.square(tf.stop_gradient(self.output_pre) - mu) / sigma_sq \
|
|
- 0.5 * tf.log(2.0 * np.pi) - 0.5 * log_sigma_sq
|
|
|
|
self.all_log_probs = tf.identity(all_probs, name='action_probs')
|
|
|
|
self.entropy = 0.5 * tf.reduce_mean(tf.log(2 * np.pi * np.e) + log_sigma_sq)
|
|
|
|
value = tf.layers.dense(hidden_value, 1, activation=None)
|
|
self.value = tf.identity(value, name="value_estimate")
|
|
|
|
self.all_old_log_probs = tf.placeholder(shape=[None, self.a_size[0]], dtype=tf.float32,
|
|
name='old_probabilities')
|
|
|
|
# We keep these tensors the same name, but use new nodes to keep code parallelism with discrete control.
|
|
self.log_probs = tf.reduce_sum((tf.identity(self.all_log_probs)), axis=1, keepdims=True)
|
|
self.old_log_probs = tf.reduce_sum((tf.identity(self.all_old_log_probs)), axis=1, keepdims=True)
|
|
|
|
def create_dc_actor_critic(self, h_size, num_layers):
|
|
"""
|
|
Creates Discrete control actor-critic model.
|
|
:param h_size: Size of hidden linear layers.
|
|
:param num_layers: Number of hidden linear layers.
|
|
"""
|
|
hidden_streams = self.create_observation_streams(1, h_size, num_layers)
|
|
hidden = hidden_streams[0]
|
|
|
|
if self.use_recurrent:
|
|
tf.Variable(self.m_size, name="memory_size", trainable=False, dtype=tf.int32)
|
|
self.prev_action = tf.placeholder(shape=[None, len(self.a_size)], dtype=tf.int32, name='prev_action')
|
|
prev_action_oh = tf.concat([
|
|
tf.one_hot(self.prev_action[:, i], self.a_size[i]) for i in range(len(self.a_size))], axis=1)
|
|
hidden = tf.concat([hidden, prev_action_oh], axis=1)
|
|
|
|
self.memory_in = tf.placeholder(shape=[None, self.m_size], dtype=tf.float32, name='recurrent_in')
|
|
hidden, memory_out = self.create_recurrent_encoder(hidden, self.memory_in, self.sequence_length)
|
|
self.memory_out = tf.identity(memory_out, name='recurrent_out')
|
|
|
|
policy_branches = []
|
|
for size in self.a_size:
|
|
policy_branches.append(tf.layers.dense(hidden, size, activation=None, use_bias=False,
|
|
kernel_initializer=c_layers.variance_scaling_initializer(factor=0.01)))
|
|
|
|
self.all_log_probs = tf.concat([branch for branch in policy_branches], axis=1, name="action_probs")
|
|
|
|
self.action_masks = tf.placeholder(shape=[None, sum(self.a_size)], dtype=tf.float32, name="action_masks")
|
|
output, normalized_logits = self.create_discrete_action_masking_layer(
|
|
self.all_log_probs, self.action_masks, self.a_size)
|
|
|
|
self.output = tf.identity(output, name="action")
|
|
|
|
value = tf.layers.dense(hidden, 1, activation=None)
|
|
self.value = tf.identity(value, name="value_estimate")
|
|
|
|
self.action_holder = tf.placeholder(
|
|
shape=[None, len(policy_branches)], dtype=tf.int32, name="action_holder")
|
|
self.selected_actions = tf.concat([
|
|
tf.one_hot(self.action_holder[:, i], self.a_size[i]) for i in range(len(self.a_size))], axis=1)
|
|
|
|
self.all_old_log_probs = tf.placeholder(
|
|
shape=[None, sum(self.a_size)], dtype=tf.float32, name='old_probabilities')
|
|
_, old_normalized_logits = self.create_discrete_action_masking_layer(
|
|
self.all_old_log_probs, self.action_masks, self.a_size)
|
|
|
|
action_idx = [0] + list(np.cumsum(self.a_size))
|
|
|
|
self.entropy = tf.reduce_sum((tf.stack([
|
|
tf.nn.softmax_cross_entropy_with_logits_v2(
|
|
labels=tf.nn.softmax(self.all_log_probs[:, action_idx[i]:action_idx[i + 1]]),
|
|
logits=self.all_log_probs[:, action_idx[i]:action_idx[i + 1]])
|
|
for i in range(len(self.a_size))], axis=1)), axis=1)
|
|
|
|
self.log_probs = tf.reduce_sum((tf.stack([
|
|
-tf.nn.softmax_cross_entropy_with_logits_v2(
|
|
labels=self.selected_actions[:, action_idx[i]:action_idx[i + 1]],
|
|
logits=normalized_logits[:, action_idx[i]:action_idx[i + 1]]
|
|
)
|
|
for i in range(len(self.a_size))], axis=1)), axis=1, keepdims=True)
|
|
self.old_log_probs = tf.reduce_sum((tf.stack([
|
|
-tf.nn.softmax_cross_entropy_with_logits_v2(
|
|
labels=self.selected_actions[:, action_idx[i]:action_idx[i + 1]],
|
|
logits=old_normalized_logits[:, action_idx[i]:action_idx[i + 1]]
|
|
)
|
|
for i in range(len(self.a_size))], axis=1)), axis=1, keepdims=True)
|
|
|