您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
493 行
17 KiB
493 行
17 KiB
using System.Collections;
|
|
using System.Collections.Generic;
|
|
using UnityEngine;
|
|
|
|
#if UNITY_EDITOR
|
|
using UnityEditor;
|
|
#endif
|
|
|
|
using System.Linq;
|
|
|
|
#if ENABLE_TENSORFLOW
|
|
using TensorFlow;
|
|
#endif
|
|
|
|
/// CoreBrain which decides actions using internally embedded TensorFlow model.
|
|
public class CoreBrainInternal : ScriptableObject, CoreBrain
|
|
{
|
|
|
|
[SerializeField]
|
|
[Tooltip("If checked, the brain will broadcast states and actions to Python.")]
|
|
private bool broadcast = true;
|
|
|
|
[System.Serializable]
|
|
private struct TensorFlowAgentPlaceholder
|
|
{
|
|
public enum tensorType
|
|
{
|
|
Integer,
|
|
FloatingPoint
|
|
}
|
|
|
|
;
|
|
|
|
public string name;
|
|
public tensorType valueType;
|
|
public float minValue;
|
|
public float maxValue;
|
|
|
|
}
|
|
|
|
ExternalCommunicator coord;
|
|
|
|
[Tooltip("This must be the bytes file corresponding to the pretrained Tensorflow graph.")]
|
|
/// Modify only in inspector : Reference to the Graph asset
|
|
public TextAsset graphModel;
|
|
|
|
/// Modify only in inspector : If a scope was used when training the model, specify it here
|
|
public string graphScope;
|
|
[SerializeField]
|
|
[Tooltip("If your graph takes additional inputs that are fixed (example: noise level) you can specify them here.")]
|
|
/// Modify only in inspector : If your graph takes additional inputs that are fixed you can specify them here.
|
|
private TensorFlowAgentPlaceholder[] graphPlaceholders;
|
|
/// Modify only in inspector : Name of the placholder of the batch size
|
|
public string BatchSizePlaceholderName = "batch_size";
|
|
/// Modify only in inspector : Name of the state placeholder
|
|
public string StatePlacholderName = "state";
|
|
/// Modify only in inspector : Name of the recurrent input
|
|
public string RecurrentInPlaceholderName = "recurrent_in";
|
|
/// Modify only in inspector : Name of the recurrent output
|
|
public string RecurrentOutPlaceholderName = "recurrent_out";
|
|
/// Modify only in inspector : Names of the observations placeholders
|
|
public string[] ObservationPlaceholderName;
|
|
/// Modify only in inspector : Name of the action node
|
|
public string ActionPlaceholderName = "action";
|
|
#if ENABLE_TENSORFLOW
|
|
TFGraph graph;
|
|
TFSession session;
|
|
bool hasRecurrent;
|
|
bool hasState;
|
|
bool hasBatchSize;
|
|
bool hasValue;
|
|
List<int> agentKeys;
|
|
int currentBatchSize;
|
|
float[,] inputState;
|
|
List<float[,,,]> observationMatrixList;
|
|
float[,] inputOldMemories;
|
|
#endif
|
|
|
|
/// Reference to the brain that uses this CoreBrainInternal
|
|
public Brain brain;
|
|
|
|
/// Create the reference to the brain
|
|
public void SetBrain(Brain b)
|
|
{
|
|
brain = b;
|
|
}
|
|
|
|
/// Loads the tensorflow graph model to generate a TFGraph object
|
|
public void InitializeCoreBrain()
|
|
{
|
|
#if ENABLE_TENSORFLOW
|
|
#if UNITY_ANDROID
|
|
// This needs to ba called only once and will raise an exception if
|
|
// there are multiple internal brains
|
|
try{
|
|
TensorFlowSharp.Android.NativeBinding.Init();
|
|
}
|
|
catch{
|
|
|
|
}
|
|
#endif
|
|
if ((brain.gameObject.transform.parent.gameObject.GetComponent<Academy>().communicator == null)
|
|
|| (!broadcast))
|
|
{
|
|
coord = null;
|
|
}
|
|
else if (brain.gameObject.transform.parent.gameObject.GetComponent<Academy>().communicator is ExternalCommunicator)
|
|
{
|
|
coord = (ExternalCommunicator)brain.gameObject.transform.parent.gameObject.GetComponent<Academy>().communicator;
|
|
coord.SubscribeBrain(brain);
|
|
}
|
|
|
|
if (graphModel != null)
|
|
{
|
|
|
|
graph = new TFGraph();
|
|
|
|
graph.Import(graphModel.bytes);
|
|
|
|
session = new TFSession(graph);
|
|
|
|
if ((graphScope.Length > 1) && (graphScope[graphScope.Length - 1] != '/'))
|
|
{
|
|
graphScope = graphScope + '/';
|
|
}
|
|
|
|
if (graph[graphScope + BatchSizePlaceholderName] != null)
|
|
{
|
|
hasBatchSize = true;
|
|
}
|
|
if ((graph[graphScope + RecurrentInPlaceholderName] != null) && (graph[graphScope + RecurrentOutPlaceholderName] != null))
|
|
{
|
|
hasRecurrent = true;
|
|
|
|
}
|
|
if (graph[graphScope + StatePlacholderName] != null)
|
|
{
|
|
hasState = true;
|
|
}
|
|
if (graph[graphScope + "value_estimate"] != null)
|
|
{
|
|
hasValue = true;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
/// Collects information from the agents and store them
|
|
public void SendState()
|
|
{
|
|
#if ENABLE_TENSORFLOW
|
|
agentKeys = new List<int>(brain.agents.Keys);
|
|
currentBatchSize = brain.agents.Count;
|
|
if (currentBatchSize == 0)
|
|
{
|
|
|
|
if (coord != null)
|
|
{
|
|
coord.giveBrainInfo(brain);
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
// Create the state tensor
|
|
if (hasState)
|
|
{
|
|
Dictionary<int, List<float>> states = brain.CollectStates();
|
|
inputState = new float[currentBatchSize, brain.brainParameters.stateSize * brain.brainParameters.stackedStates];
|
|
var i = 0;
|
|
foreach (int k in agentKeys)
|
|
{
|
|
List<float> state_list = states[k];
|
|
for (int j = 0; j < brain.brainParameters.stateSize * brain.brainParameters.stackedStates; j++)
|
|
{
|
|
|
|
inputState[i, j] = state_list[j];
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
|
|
|
|
// Create the observation tensors
|
|
observationMatrixList = brain.GetObservationMatrixList(agentKeys);
|
|
|
|
// Create the recurrent tensor
|
|
if (hasRecurrent)
|
|
{
|
|
Dictionary<int, float[]> old_memories = brain.CollectMemories();
|
|
inputOldMemories = new float[currentBatchSize, brain.brainParameters.memorySize];
|
|
var i = 0;
|
|
foreach (int k in agentKeys)
|
|
{
|
|
float[] m = old_memories[k];
|
|
for (int j = 0; j < brain.brainParameters.memorySize; j++)
|
|
{
|
|
|
|
inputOldMemories[i, j] = m[j];
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
|
|
|
|
if (coord != null)
|
|
{
|
|
coord.giveBrainInfo(brain);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
/// Uses the stored information to run the tensorflow graph and generate
|
|
/// the actions.
|
|
public void DecideAction()
|
|
{
|
|
#if ENABLE_TENSORFLOW
|
|
if (currentBatchSize == 0)
|
|
{
|
|
return;
|
|
}
|
|
|
|
var runner = session.GetRunner();
|
|
try
|
|
{
|
|
runner.Fetch(graph[graphScope + ActionPlaceholderName][0]);
|
|
}
|
|
catch
|
|
{
|
|
throw new UnityAgentsException(string.Format(@"The node {0} could not be found. Please make sure the graphScope {1} is correct",
|
|
graphScope + ActionPlaceholderName, graphScope));
|
|
}
|
|
|
|
if (hasBatchSize)
|
|
{
|
|
runner.AddInput(graph[graphScope + BatchSizePlaceholderName][0], new int[] { currentBatchSize });
|
|
}
|
|
|
|
foreach (TensorFlowAgentPlaceholder placeholder in graphPlaceholders)
|
|
{
|
|
try
|
|
{
|
|
if (placeholder.valueType == TensorFlowAgentPlaceholder.tensorType.FloatingPoint)
|
|
{
|
|
runner.AddInput(graph[graphScope + placeholder.name][0], new float[] { Random.Range(placeholder.minValue, placeholder.maxValue) });
|
|
}
|
|
else if (placeholder.valueType == TensorFlowAgentPlaceholder.tensorType.Integer)
|
|
{
|
|
runner.AddInput(graph[graphScope + placeholder.name][0], new int[] { Random.Range((int)placeholder.minValue, (int)placeholder.maxValue + 1) });
|
|
}
|
|
}
|
|
catch
|
|
{
|
|
throw new UnityAgentsException(string.Format(@"One of the Tensorflow placeholder cound nout be found.
|
|
In brain {0}, there are no {1} placeholder named {2}.",
|
|
brain.gameObject.name, placeholder.valueType.ToString(), graphScope + placeholder.name));
|
|
}
|
|
}
|
|
|
|
// Create the state tensor
|
|
if (hasState)
|
|
{
|
|
if (brain.brainParameters.stateSpaceType == StateType.discrete)
|
|
{
|
|
var discreteInputState = new int[currentBatchSize, 1];
|
|
for (int i = 0; i < currentBatchSize; i++)
|
|
{
|
|
discreteInputState[i, 0] = (int)inputState[i, 0];
|
|
}
|
|
runner.AddInput(graph[graphScope + StatePlacholderName][0], discreteInputState);
|
|
}
|
|
else
|
|
{
|
|
runner.AddInput(graph[graphScope + StatePlacholderName][0], inputState);
|
|
}
|
|
}
|
|
|
|
// Create the observation tensors
|
|
for (int obs_number = 0; obs_number < brain.brainParameters.cameraResolutions.Length; obs_number++)
|
|
{
|
|
runner.AddInput(graph[graphScope + ObservationPlaceholderName[obs_number]][0], observationMatrixList[obs_number]);
|
|
}
|
|
|
|
if (hasRecurrent)
|
|
{
|
|
runner.AddInput(graph[graphScope + "sequence_length"][0], 1);
|
|
runner.AddInput(graph[graphScope + RecurrentInPlaceholderName][0], inputOldMemories);
|
|
runner.Fetch(graph[graphScope + RecurrentOutPlaceholderName][0]);
|
|
}
|
|
|
|
if (hasValue)
|
|
{
|
|
runner.Fetch(graph[graphScope + "value_estimate"][0]);
|
|
}
|
|
|
|
TFTensor[] networkOutput;
|
|
try
|
|
{
|
|
networkOutput = runner.Run();
|
|
}
|
|
catch (TFException e)
|
|
{
|
|
string errorMessage = e.Message;
|
|
try
|
|
{
|
|
errorMessage = string.Format(@"The tensorflow graph needs an input for {0} of type {1}",
|
|
e.Message.Split(new string[] { "Node: " }, 0)[1].Split('=')[0],
|
|
e.Message.Split(new string[] { "dtype=" }, 0)[1].Split(',')[0]);
|
|
}
|
|
finally
|
|
{
|
|
throw new UnityAgentsException(errorMessage);
|
|
}
|
|
|
|
}
|
|
|
|
// Create the recurrent tensor
|
|
if (hasRecurrent)
|
|
{
|
|
var new_memories = new Dictionary<int, float[]>();
|
|
|
|
float[,] recurrent_tensor = networkOutput[1].GetValue() as float[,];
|
|
|
|
var i = 0;
|
|
foreach (int k in agentKeys)
|
|
{
|
|
var m = new float[brain.brainParameters.memorySize];
|
|
for (int j = 0; j < brain.brainParameters.memorySize; j++)
|
|
{
|
|
m[j] = recurrent_tensor[i, j];
|
|
}
|
|
new_memories.Add(k, m);
|
|
i++;
|
|
}
|
|
|
|
brain.SendMemories(new_memories);
|
|
}
|
|
|
|
var actions = new Dictionary<int, float[]>();
|
|
|
|
if (brain.brainParameters.actionSpaceType == StateType.continuous)
|
|
{
|
|
var output = networkOutput[0].GetValue() as float[,];
|
|
var i = 0;
|
|
foreach (int k in agentKeys)
|
|
{
|
|
var a = new float[brain.brainParameters.actionSize];
|
|
for (int j = 0; j < brain.brainParameters.actionSize; j++)
|
|
{
|
|
a[j] = output[i, j];
|
|
}
|
|
actions.Add(k, a);
|
|
i++;
|
|
}
|
|
}
|
|
else if (brain.brainParameters.actionSpaceType == StateType.discrete)
|
|
{
|
|
long[,] output = networkOutput[0].GetValue() as long[,];
|
|
var i = 0;
|
|
foreach (int k in agentKeys)
|
|
{
|
|
var a = new float[1] { (float)(output[i, 0]) };
|
|
actions.Add(k, a);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
brain.SendActions(actions);
|
|
|
|
if (hasValue)
|
|
{
|
|
var values = new Dictionary<int, float>();
|
|
float[,] value_tensor;
|
|
if (hasRecurrent)
|
|
{
|
|
value_tensor = networkOutput[2].GetValue() as float[,];
|
|
}
|
|
else
|
|
{
|
|
value_tensor = networkOutput[1].GetValue() as float[,];
|
|
}
|
|
var i = 0;
|
|
foreach (int k in agentKeys)
|
|
{
|
|
var v = (float)(value_tensor[i, 0]);
|
|
values.Add(k, v);
|
|
i++;
|
|
}
|
|
brain.SendValues(values);
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
/// Displays the parameters of the CoreBrainInternal in the Inspector
|
|
public void OnInspector()
|
|
{
|
|
#if ENABLE_TENSORFLOW && UNITY_EDITOR
|
|
EditorGUILayout.LabelField("", GUI.skin.horizontalSlider);
|
|
broadcast = EditorGUILayout.Toggle(new GUIContent("Broadcast",
|
|
"If checked, the brain will broadcast states and actions to Python."), broadcast);
|
|
var serializedBrain = new SerializedObject(this);
|
|
GUILayout.Label("Edit the Tensorflow graph parameters here");
|
|
var tfGraphModel = serializedBrain.FindProperty("graphModel");
|
|
serializedBrain.Update();
|
|
EditorGUILayout.ObjectField(tfGraphModel);
|
|
serializedBrain.ApplyModifiedProperties();
|
|
|
|
if (graphModel == null)
|
|
{
|
|
EditorGUILayout.HelpBox("Please provide a tensorflow graph as a bytes file.", MessageType.Error);
|
|
}
|
|
|
|
|
|
graphScope = EditorGUILayout.TextField(new GUIContent("Graph Scope", "If you set a scope while training your tensorflow model, " +
|
|
"all your placeholder name will have a prefix. You must specify that prefix here."), graphScope);
|
|
|
|
if (BatchSizePlaceholderName == "")
|
|
{
|
|
BatchSizePlaceholderName = "batch_size";
|
|
}
|
|
BatchSizePlaceholderName = EditorGUILayout.TextField(new GUIContent("Batch Size Node Name", "If the batch size is one of " +
|
|
"the inputs of your graph, you must specify the name if the placeholder here."), BatchSizePlaceholderName);
|
|
if (StatePlacholderName == "")
|
|
{
|
|
StatePlacholderName = "state";
|
|
}
|
|
StatePlacholderName = EditorGUILayout.TextField(new GUIContent("State Node Name", "If your graph uses the state as an input, " +
|
|
"you must specify the name if the placeholder here."), StatePlacholderName);
|
|
if (RecurrentInPlaceholderName == "")
|
|
{
|
|
RecurrentInPlaceholderName = "recurrent_in";
|
|
}
|
|
RecurrentInPlaceholderName = EditorGUILayout.TextField(new GUIContent("Recurrent Input Node Name", "If your graph uses a " +
|
|
"recurrent input / memory as input and outputs new recurrent input / memory, " +
|
|
"you must specify the name if the input placeholder here."), RecurrentInPlaceholderName);
|
|
if (RecurrentOutPlaceholderName == "")
|
|
{
|
|
RecurrentOutPlaceholderName = "recurrent_out";
|
|
}
|
|
RecurrentOutPlaceholderName = EditorGUILayout.TextField(new GUIContent("Recurrent Output Node Name", " If your graph uses a " +
|
|
"recurrent input / memory as input and outputs new recurrent input / memory, you must specify the name if " +
|
|
"the output placeholder here."), RecurrentOutPlaceholderName);
|
|
|
|
if (brain.brainParameters.cameraResolutions != null)
|
|
{
|
|
if (brain.brainParameters.cameraResolutions.Count() > 0)
|
|
{
|
|
if (ObservationPlaceholderName == null)
|
|
{
|
|
ObservationPlaceholderName = new string[brain.brainParameters.cameraResolutions.Count()];
|
|
}
|
|
if (ObservationPlaceholderName.Count() != brain.brainParameters.cameraResolutions.Count())
|
|
{
|
|
ObservationPlaceholderName = new string[brain.brainParameters.cameraResolutions.Count()];
|
|
}
|
|
for (int obs_number = 0; obs_number < brain.brainParameters.cameraResolutions.Count(); obs_number++)
|
|
{
|
|
if ((ObservationPlaceholderName[obs_number] == "") || (ObservationPlaceholderName[obs_number] == null))
|
|
{
|
|
|
|
ObservationPlaceholderName[obs_number] = "observation_" + obs_number;
|
|
}
|
|
}
|
|
var opn = serializedBrain.FindProperty("ObservationPlaceholderName");
|
|
serializedBrain.Update();
|
|
EditorGUILayout.PropertyField(opn, true);
|
|
serializedBrain.ApplyModifiedProperties();
|
|
}
|
|
}
|
|
|
|
if (ActionPlaceholderName == "")
|
|
{
|
|
ActionPlaceholderName = "action";
|
|
}
|
|
ActionPlaceholderName = EditorGUILayout.TextField(new GUIContent("Action Node Name", "Specify the name of the " +
|
|
"placeholder corresponding to the actions of the brain in your graph. If the action space type is " +
|
|
"continuous, the output must be a one dimensional tensor of float of length Action Space Size, " +
|
|
"if the action space type is discrete, the output must be a one dimensional tensor of int " +
|
|
"of length 1."), ActionPlaceholderName);
|
|
|
|
|
|
|
|
var tfPlaceholders = serializedBrain.FindProperty("graphPlaceholders");
|
|
serializedBrain.Update();
|
|
EditorGUILayout.PropertyField(tfPlaceholders, true);
|
|
serializedBrain.ApplyModifiedProperties();
|
|
#endif
|
|
}
|
|
|
|
}
|