您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
303 行
11 KiB
303 行
11 KiB
# # Unity ML-Agents Toolkit
|
|
import logging
|
|
from typing import Dict, List, Deque, Any
|
|
import os
|
|
|
|
from mlagents.tf_utils import tf
|
|
|
|
import numpy as np
|
|
from collections import deque, defaultdict
|
|
|
|
from mlagents.trainers.action_info import ActionInfoOutputs
|
|
from mlagents.envs.exception import UnityException
|
|
from mlagents.envs.timers import set_gauge
|
|
from mlagents.trainers.trainer_metrics import TrainerMetrics
|
|
from mlagents.trainers.tf_policy import TFPolicy
|
|
from mlagents.trainers.brain import BrainParameters, BrainInfo
|
|
|
|
LOGGER = logging.getLogger("mlagents.trainers")
|
|
|
|
|
|
class UnityTrainerException(UnityException):
|
|
"""
|
|
Related to errors with the Trainer.
|
|
"""
|
|
|
|
pass
|
|
|
|
|
|
class Trainer(object):
|
|
"""This class is the base class for the mlagents.envs.trainers"""
|
|
|
|
def __init__(
|
|
self,
|
|
brain_name: str,
|
|
trainer_parameters: dict,
|
|
training: bool,
|
|
run_id: str,
|
|
reward_buff_cap: int = 1,
|
|
):
|
|
"""
|
|
Responsible for collecting experiences and training a neural network model.
|
|
:BrainParameters brain: Brain to be trained.
|
|
:dict trainer_parameters: The parameters for the trainer (dictionary).
|
|
:bool training: Whether the trainer is set for training.
|
|
:str run_id: The identifier of the current run
|
|
:int reward_buff_cap:
|
|
"""
|
|
self.param_keys: List[str] = []
|
|
self.brain_name = brain_name
|
|
self.run_id = run_id
|
|
self.trainer_parameters = trainer_parameters
|
|
self.summary_path = trainer_parameters["summary_path"]
|
|
if not os.path.exists(self.summary_path):
|
|
os.makedirs(self.summary_path)
|
|
self.cumulative_returns_since_policy_update: List[float] = []
|
|
self.is_training = training
|
|
self.stats: Dict[str, List] = defaultdict(list)
|
|
self.trainer_metrics = TrainerMetrics(
|
|
path=self.summary_path + ".csv", brain_name=self.brain_name
|
|
)
|
|
self.summary_writer = tf.summary.FileWriter(self.summary_path)
|
|
self._reward_buffer: Deque[float] = deque(maxlen=reward_buff_cap)
|
|
self.policy: TFPolicy
|
|
self.policies: Dict[str, TFPolicy] = {}
|
|
self.step: int = 0
|
|
|
|
def check_param_keys(self):
|
|
for k in self.param_keys:
|
|
if k not in self.trainer_parameters:
|
|
raise UnityTrainerException(
|
|
"The hyper-parameter {0} could not be found for the {1} trainer of "
|
|
"brain {2}.".format(k, self.__class__, self.brain_name)
|
|
)
|
|
|
|
def dict_to_str(self, param_dict: Dict[str, Any], num_tabs: int) -> str:
|
|
"""
|
|
Takes a parameter dictionary and converts it to a human-readable string.
|
|
Recurses if there are multiple levels of dict. Used to print out hyperaparameters.
|
|
param: param_dict: A Dictionary of key, value parameters.
|
|
return: A string version of this dictionary.
|
|
"""
|
|
if not isinstance(param_dict, dict):
|
|
return str(param_dict)
|
|
else:
|
|
append_newline = "\n" if num_tabs > 0 else ""
|
|
return append_newline + "\n".join(
|
|
[
|
|
"\t"
|
|
+ " " * num_tabs
|
|
+ "{0}:\t{1}".format(
|
|
x, self.dict_to_str(param_dict[x], num_tabs + 1)
|
|
)
|
|
for x in param_dict
|
|
]
|
|
)
|
|
|
|
def __str__(self) -> str:
|
|
return """Hyperparameters for the {0} of brain {1}: \n{2}""".format(
|
|
self.__class__.__name__,
|
|
self.brain_name,
|
|
self.dict_to_str(self.trainer_parameters, 0),
|
|
)
|
|
|
|
@property
|
|
def parameters(self) -> Dict[str, Any]:
|
|
"""
|
|
Returns the trainer parameters of the trainer.
|
|
"""
|
|
return self.trainer_parameters
|
|
|
|
@property
|
|
def get_max_steps(self) -> float:
|
|
"""
|
|
Returns the maximum number of steps. Is used to know when the trainer should be stopped.
|
|
:return: The maximum number of steps of the trainer
|
|
"""
|
|
return float(self.trainer_parameters["max_steps"])
|
|
|
|
@property
|
|
def get_step(self) -> int:
|
|
"""
|
|
Returns the number of steps the trainer has performed
|
|
:return: the step count of the trainer
|
|
"""
|
|
return self.step
|
|
|
|
@property
|
|
def reward_buffer(self) -> Deque[float]:
|
|
"""
|
|
Returns the reward buffer. The reward buffer contains the cumulative
|
|
rewards of the most recent episodes completed by agents using this
|
|
trainer.
|
|
:return: the reward buffer.
|
|
"""
|
|
return self._reward_buffer
|
|
|
|
def increment_step(self, n_steps: int) -> None:
|
|
"""
|
|
Increment the step count of the trainer
|
|
|
|
:param n_steps: number of steps to increment the step count by
|
|
"""
|
|
self.step = self.policy.increment_step(n_steps)
|
|
|
|
def save_model(self) -> None:
|
|
"""
|
|
Saves the model
|
|
"""
|
|
self.policy.save_model(self.get_step)
|
|
|
|
def export_model(self) -> None:
|
|
"""
|
|
Exports the model
|
|
"""
|
|
self.policy.export_model()
|
|
|
|
def write_training_metrics(self) -> None:
|
|
"""
|
|
Write training metrics to a CSV file
|
|
:return:
|
|
"""
|
|
self.trainer_metrics.write_training_metrics()
|
|
|
|
def write_summary(
|
|
self, global_step: int, delta_train_start: float, lesson_num: int = 0
|
|
) -> None:
|
|
"""
|
|
Saves training statistics to Tensorboard.
|
|
:param delta_train_start: Time elapsed since training started.
|
|
:param lesson_num: Current lesson number in curriculum.
|
|
:param global_step: The number of steps the simulation has been going for
|
|
"""
|
|
if (
|
|
global_step % self.trainer_parameters["summary_freq"] == 0
|
|
and global_step != 0
|
|
):
|
|
is_training = (
|
|
"Training."
|
|
if self.is_training and self.get_step <= self.get_max_steps
|
|
else "Not Training."
|
|
)
|
|
step = min(self.get_step, self.get_max_steps)
|
|
if len(self.stats["Environment/Cumulative Reward"]) > 0:
|
|
mean_reward = np.mean(self.stats["Environment/Cumulative Reward"])
|
|
LOGGER.info(
|
|
" {}: {}: Step: {}. "
|
|
"Time Elapsed: {:0.3f} s "
|
|
"Mean "
|
|
"Reward: {:0.3f}"
|
|
". Std of Reward: {:0.3f}. {}".format(
|
|
self.run_id,
|
|
self.brain_name,
|
|
step,
|
|
delta_train_start,
|
|
mean_reward,
|
|
np.std(self.stats["Environment/Cumulative Reward"]),
|
|
is_training,
|
|
)
|
|
)
|
|
set_gauge(f"{self.brain_name}.mean_reward", mean_reward)
|
|
else:
|
|
LOGGER.info(
|
|
" {}: {}: Step: {}. No episode was completed since last summary. {}".format(
|
|
self.run_id, self.brain_name, step, is_training
|
|
)
|
|
)
|
|
summary = tf.Summary()
|
|
for key in self.stats:
|
|
if len(self.stats[key]) > 0:
|
|
stat_mean = float(np.mean(self.stats[key]))
|
|
summary.value.add(tag="{}".format(key), simple_value=stat_mean)
|
|
self.stats[key] = []
|
|
summary.value.add(tag="Environment/Lesson", simple_value=lesson_num)
|
|
self.summary_writer.add_summary(summary, step)
|
|
self.summary_writer.flush()
|
|
|
|
def write_tensorboard_text(self, key: str, input_dict: Dict[str, Any]) -> None:
|
|
"""
|
|
Saves text to Tensorboard.
|
|
Note: Only works on tensorflow r1.2 or above.
|
|
:param key: The name of the text.
|
|
:param input_dict: A dictionary that will be displayed in a table on Tensorboard.
|
|
"""
|
|
try:
|
|
with tf.Session() as sess:
|
|
s_op = tf.summary.text(
|
|
key,
|
|
tf.convert_to_tensor(
|
|
([[str(x), str(input_dict[x])] for x in input_dict])
|
|
),
|
|
)
|
|
s = sess.run(s_op)
|
|
self.summary_writer.add_summary(s, self.get_step)
|
|
except Exception:
|
|
LOGGER.info(
|
|
"Cannot write text summary for Tensorboard. Tensorflow version must be r1.2 or above."
|
|
)
|
|
pass
|
|
|
|
def add_experiences(
|
|
self,
|
|
name_behavior_id: str,
|
|
curr_info: BrainInfo,
|
|
next_info: BrainInfo,
|
|
take_action_outputs: ActionInfoOutputs,
|
|
) -> None:
|
|
"""
|
|
Adds experiences to each agent's experience history.
|
|
:param name_behavior_id: string policy identifier.
|
|
:param curr_info: current BrainInfo.
|
|
:param next_info: next BrainInfo.
|
|
:param take_action_outputs: The outputs of the Policy's get_action method.
|
|
"""
|
|
raise UnityTrainerException("The add_experiences method was not implemented.")
|
|
|
|
def process_experiences(
|
|
self, name_behavior_id: str, current_info: BrainInfo, next_info: BrainInfo
|
|
) -> None:
|
|
"""
|
|
Checks agent histories for processing condition, and processes them as necessary.
|
|
Processing involves calculating value and advantage targets for model updating step.
|
|
:param name_behavior_id: string policy identifier.
|
|
:param current_info: current BrainInfo.
|
|
:param next_info: next BrainInfo.
|
|
"""
|
|
raise UnityTrainerException(
|
|
"The process_experiences method was not implemented."
|
|
)
|
|
|
|
def end_episode(self):
|
|
"""
|
|
A signal that the Episode has ended. The buffer must be reset.
|
|
Get only called when the academy resets.
|
|
"""
|
|
raise UnityTrainerException("The end_episode method was not implemented.")
|
|
|
|
def is_ready_update(self):
|
|
"""
|
|
Returns whether or not the trainer has enough elements to run update model
|
|
:return: A boolean corresponding to wether or not update_model() can be run
|
|
"""
|
|
raise UnityTrainerException("The is_ready_update method was not implemented.")
|
|
|
|
def update_policy(self):
|
|
"""
|
|
Uses demonstration_buffer to update model.
|
|
"""
|
|
raise UnityTrainerException("The update_model method was not implemented.")
|
|
|
|
def create_policy(self, brain_parameters: BrainParameters) -> TFPolicy:
|
|
"""
|
|
Creates policy
|
|
"""
|
|
raise UnityTrainerException("The update_model method was not implemented.")
|
|
|
|
def get_policy(self, brain_name: str) -> TFPolicy:
|
|
"""
|
|
Gets policy from trainers list of policies
|
|
"""
|
|
return self.policies[brain_name]
|
|
|
|
def advance(self) -> None:
|
|
pass
|