Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

197 行
6.2 KiB

from typing import List, Tuple
import numpy as np
from mlagents.trainers.buffer import AgentBuffer
from mlagents.trainers.trajectory import Trajectory, AgentExperience
from mlagents_envs.base_env import (
DecisionSteps,
TerminalSteps,
BehaviorSpec,
ActionSpec,
)
def create_mock_steps(
num_agents: int,
observation_shapes: List[Tuple],
action_spec: ActionSpec,
done: bool = False,
) -> Tuple[DecisionSteps, TerminalSteps]:
"""
Creates a mock Tuple[DecisionSteps, TerminalSteps] with observations.
Imitates constant vector/visual observations, rewards, dones, and agents.
:int num_agents: Number of "agents" to imitate.
:List observation_shapes: A List of the observation spaces in your steps
:int num_vector_acts: Number of actions in your action space
:bool discrete: Whether or not action space is discrete
:bool done: Whether all the agents in the batch are done
"""
obs_list = []
for _shape in observation_shapes:
obs_list.append(np.ones((num_agents,) + _shape, dtype=np.float32))
action_mask = None
if action_spec.is_discrete():
action_mask = [
np.array(num_agents * [action_size * [False]])
for action_size in action_spec.discrete_branches # type: ignore
] # type: ignore
reward = np.array(num_agents * [1.0], dtype=np.float32)
interrupted = np.array(num_agents * [False], dtype=np.bool)
agent_id = np.arange(num_agents, dtype=np.int32)
behavior_spec = BehaviorSpec(observation_shapes, action_spec)
if done:
return (
DecisionSteps.empty(behavior_spec),
TerminalSteps(obs_list, reward, interrupted, agent_id),
)
else:
return (
DecisionSteps(obs_list, reward, agent_id, action_mask),
TerminalSteps.empty(behavior_spec),
)
def create_steps_from_behavior_spec(
behavior_spec: BehaviorSpec, num_agents: int = 1
) -> Tuple[DecisionSteps, TerminalSteps]:
return create_mock_steps(
num_agents=num_agents,
observation_shapes=behavior_spec.observation_shapes,
action_spec=behavior_spec.action_spec,
)
def make_fake_trajectory(
length: int,
observation_shapes: List[Tuple],
action_spec: ActionSpec,
max_step_complete: bool = False,
memory_size: int = 10,
) -> Trajectory:
"""
Makes a fake trajectory of length length. If max_step_complete,
the trajectory is terminated by a max step rather than a done.
"""
steps_list = []
action_size = action_spec.discrete_size + action_spec.continuous_size
action_probs = {
"action_probs": np.ones(
int(np.sum(action_spec.discrete_branches) + action_spec.continuous_size),
dtype=np.float32,
)
}
for _i in range(length - 1):
obs = []
for _shape in observation_shapes:
obs.append(np.ones(_shape, dtype=np.float32))
reward = 1.0
done = False
if action_spec.is_continuous():
action = {"continuous_action": np.zeros(action_size, dtype=np.float32)}
else:
action = {"discrete_action": np.zeros(action_size, dtype=np.float32)}
action_pre = np.zeros(action_size, dtype=np.float32)
action_mask = (
[
[False for _ in range(branch)]
for branch in action_spec.discrete_branches
] # type: ignore
if action_spec.is_discrete()
else None
)
if action_spec.is_continuous():
prev_action = {"continuous_action": np.ones(action_size, dtype=np.float32)}
else:
prev_action = {"discrete_action": np.ones(action_size, dtype=np.float32)}
max_step = False
memory = np.ones(memory_size, dtype=np.float32)
agent_id = "test_agent"
behavior_id = "test_brain"
experience = AgentExperience(
obs=obs,
reward=reward,
done=done,
action=action,
action_probs=action_probs,
action_pre=action_pre,
action_mask=action_mask,
prev_action=prev_action,
interrupted=max_step,
memory=memory,
)
steps_list.append(experience)
obs = []
for _shape in observation_shapes:
obs.append(np.ones(_shape, dtype=np.float32))
last_experience = AgentExperience(
obs=obs,
reward=reward,
done=not max_step_complete,
action=action,
action_probs=action_probs,
action_pre=action_pre,
action_mask=action_mask,
prev_action=prev_action,
interrupted=max_step_complete,
memory=memory,
)
steps_list.append(last_experience)
return Trajectory(
steps=steps_list, agent_id=agent_id, behavior_id=behavior_id, next_obs=obs
)
def simulate_rollout(
length: int,
behavior_spec: BehaviorSpec,
memory_size: int = 10,
exclude_key_list: List[str] = None,
) -> AgentBuffer:
trajectory = make_fake_trajectory(
length,
behavior_spec.observation_shapes,
action_spec=behavior_spec.action_spec,
memory_size=memory_size,
)
buffer = trajectory.to_agentbuffer()
# If a key_list was given, remove those keys
if exclude_key_list:
for key in exclude_key_list:
if key in buffer:
buffer.pop(key)
return buffer
def setup_test_behavior_specs(
use_discrete=True, use_visual=False, vector_action_space=2, vector_obs_space=8
):
if use_discrete:
action_spec = ActionSpec.create_discrete(tuple(vector_action_space))
else:
action_spec = ActionSpec.create_continuous(vector_action_space)
behavior_spec = BehaviorSpec(
[(84, 84, 3)] * int(use_visual) + [(vector_obs_space,)], action_spec
)
return behavior_spec
def create_mock_3dball_behavior_specs():
return setup_test_behavior_specs(
False, False, vector_action_space=2, vector_obs_space=8
)
def create_mock_pushblock_behavior_specs():
return setup_test_behavior_specs(
True, False, vector_action_space=7, vector_obs_space=70
)
def create_mock_banana_behavior_specs():
return setup_test_behavior_specs(
True, True, vector_action_space=[3, 3, 3, 2], vector_obs_space=0
)