您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
340 行
15 KiB
340 行
15 KiB
import unittest.mock as mock
|
|
import pytest
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
import yaml
|
|
|
|
from mlagents.trainers.ppo.models import PPOModel
|
|
from mlagents.trainers.ppo.trainer import discount_rewards
|
|
from mlagents.trainers.ppo.policy import PPOPolicy
|
|
from mlagents.envs import UnityEnvironment
|
|
from tests.mock_communicator import MockCommunicator
|
|
|
|
|
|
@pytest.fixture
|
|
def dummy_config():
|
|
return yaml.load(
|
|
'''
|
|
trainer: ppo
|
|
batch_size: 32
|
|
beta: 5.0e-3
|
|
buffer_size: 512
|
|
epsilon: 0.2
|
|
gamma: 0.99
|
|
hidden_units: 128
|
|
lambd: 0.95
|
|
learning_rate: 3.0e-4
|
|
max_steps: 5.0e4
|
|
normalize: true
|
|
num_epoch: 5
|
|
num_layers: 2
|
|
time_horizon: 64
|
|
sequence_length: 64
|
|
summary_freq: 1000
|
|
use_recurrent: false
|
|
memory_size: 8
|
|
use_curiosity: false
|
|
curiosity_strength: 0.0
|
|
curiosity_enc_size: 1
|
|
''')
|
|
|
|
|
|
@mock.patch('mlagents.envs.UnityEnvironment.executable_launcher')
|
|
@mock.patch('mlagents.envs.UnityEnvironment.get_communicator')
|
|
def test_ppo_policy_evaluate(mock_communicator, mock_launcher):
|
|
tf.reset_default_graph()
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=False, visual_inputs=0)
|
|
env = UnityEnvironment(' ')
|
|
brain_infos = env.reset()
|
|
brain_info = brain_infos[env.brain_names[0]]
|
|
|
|
trainer_parameters = dummy_config()
|
|
model_path = env.brain_names[0]
|
|
trainer_parameters['model_path'] = model_path
|
|
trainer_parameters['keep_checkpoints'] = 3
|
|
policy = PPOPolicy(0, env.brains[env.brain_names[0]], trainer_parameters, False, False)
|
|
run_out = policy.evaluate(brain_info)
|
|
assert run_out['action'].shape == (3, 2)
|
|
env.close()
|
|
|
|
|
|
@mock.patch('mlagents.envs.UnityEnvironment.executable_launcher')
|
|
@mock.patch('mlagents.envs.UnityEnvironment.get_communicator')
|
|
def test_ppo_model_cc_vector(mock_communicator, mock_launcher):
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=False, visual_inputs=0)
|
|
env = UnityEnvironment(' ')
|
|
|
|
model = PPOModel(env.brains["RealFakeBrain"])
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [model.output, model.log_probs, model.value, model.entropy,
|
|
model.learning_rate]
|
|
feed_dict = {model.batch_size: 2,
|
|
model.sequence_length: 1,
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3],
|
|
[3, 4, 5, 3, 4, 5]])}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
env.close()
|
|
|
|
|
|
@mock.patch('mlagents.envs.UnityEnvironment.executable_launcher')
|
|
@mock.patch('mlagents.envs.UnityEnvironment.get_communicator')
|
|
def test_ppo_model_cc_visual(mock_communicator, mock_launcher):
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=False, visual_inputs=2)
|
|
env = UnityEnvironment(' ')
|
|
|
|
model = PPOModel(env.brains["RealFakeBrain"])
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [model.output, model.log_probs, model.value, model.entropy,
|
|
model.learning_rate]
|
|
feed_dict = {model.batch_size: 2,
|
|
model.sequence_length: 1,
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3],
|
|
[3, 4, 5, 3, 4, 5]]),
|
|
model.visual_in[0]: np.ones([2, 40, 30, 3]),
|
|
model.visual_in[1]: np.ones([2, 40, 30, 3])}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
env.close()
|
|
|
|
|
|
@mock.patch('mlagents.envs.UnityEnvironment.executable_launcher')
|
|
@mock.patch('mlagents.envs.UnityEnvironment.get_communicator')
|
|
def test_ppo_model_dc_visual(mock_communicator, mock_launcher):
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=True, visual_inputs=2)
|
|
env = UnityEnvironment(' ')
|
|
model = PPOModel(env.brains["RealFakeBrain"])
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [model.output, model.all_log_probs, model.value, model.entropy,
|
|
model.learning_rate]
|
|
feed_dict = {model.batch_size: 2,
|
|
model.sequence_length: 1,
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3],
|
|
[3, 4, 5, 3, 4, 5]]),
|
|
model.visual_in[0]: np.ones([2, 40, 30, 3]),
|
|
model.visual_in[1]: np.ones([2, 40, 30, 3]),
|
|
model.action_masks: np.ones([2,2])
|
|
}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
env.close()
|
|
|
|
|
|
@mock.patch('mlagents.envs.UnityEnvironment.executable_launcher')
|
|
@mock.patch('mlagents.envs.UnityEnvironment.get_communicator')
|
|
def test_ppo_model_dc_vector(mock_communicator, mock_launcher):
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=True, visual_inputs=0)
|
|
env = UnityEnvironment(' ')
|
|
model = PPOModel(env.brains["RealFakeBrain"])
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [model.output, model.all_log_probs, model.value, model.entropy,
|
|
model.learning_rate]
|
|
feed_dict = {model.batch_size: 2,
|
|
model.sequence_length: 1,
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3],
|
|
[3, 4, 5, 3, 4, 5]]),
|
|
model.action_masks: np.ones([2,2])}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
env.close()
|
|
|
|
|
|
@mock.patch('mlagents.envs.UnityEnvironment.executable_launcher')
|
|
@mock.patch('mlagents.envs.UnityEnvironment.get_communicator')
|
|
def test_ppo_model_dc_vector_rnn(mock_communicator, mock_launcher):
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=True, visual_inputs=0)
|
|
env = UnityEnvironment(' ')
|
|
memory_size = 128
|
|
model = PPOModel(env.brains["RealFakeBrain"], use_recurrent=True, m_size=memory_size)
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [model.output, model.all_log_probs, model.value, model.entropy,
|
|
model.learning_rate, model.memory_out]
|
|
feed_dict = {model.batch_size: 1,
|
|
model.sequence_length: 2,
|
|
model.prev_action: [[0], [0]],
|
|
model.memory_in: np.zeros((1, memory_size)),
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3],
|
|
[3, 4, 5, 3, 4, 5]]),
|
|
model.action_masks: np.ones([1,2])}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
env.close()
|
|
|
|
|
|
@mock.patch('mlagents.envs.UnityEnvironment.executable_launcher')
|
|
@mock.patch('mlagents.envs.UnityEnvironment.get_communicator')
|
|
def test_ppo_model_cc_vector_rnn(mock_communicator, mock_launcher):
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=False, visual_inputs=0)
|
|
env = UnityEnvironment(' ')
|
|
memory_size = 128
|
|
model = PPOModel(env.brains["RealFakeBrain"], use_recurrent=True, m_size=memory_size)
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [model.output, model.all_log_probs, model.value, model.entropy,
|
|
model.learning_rate, model.memory_out]
|
|
feed_dict = {model.batch_size: 1,
|
|
model.sequence_length: 2,
|
|
model.memory_in: np.zeros((1, memory_size)),
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3],
|
|
[3, 4, 5, 3, 4, 5]])}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
env.close()
|
|
|
|
|
|
@mock.patch('mlagents.envs.UnityEnvironment.executable_launcher')
|
|
@mock.patch('mlagents.envs.UnityEnvironment.get_communicator')
|
|
def test_ppo_model_dc_vector_curio(mock_communicator, mock_launcher):
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=True, visual_inputs=0)
|
|
env = UnityEnvironment(' ')
|
|
model = PPOModel(env.brains["RealFakeBrain"], use_curiosity=True)
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [model.output, model.all_log_probs, model.value, model.entropy,
|
|
model.learning_rate, model.intrinsic_reward]
|
|
feed_dict = {model.batch_size: 2,
|
|
model.sequence_length: 1,
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3],
|
|
[3, 4, 5, 3, 4, 5]]),
|
|
model.next_vector_in: np.array([[1, 2, 3, 1, 2, 3],
|
|
[3, 4, 5, 3, 4, 5]]),
|
|
model.action_holder: [[0], [0]],
|
|
model.action_masks: np.ones([2,2])}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
env.close()
|
|
|
|
|
|
@mock.patch('mlagents.envs.UnityEnvironment.executable_launcher')
|
|
@mock.patch('mlagents.envs.UnityEnvironment.get_communicator')
|
|
def test_ppo_model_cc_vector_curio(mock_communicator, mock_launcher):
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=False, visual_inputs=0)
|
|
env = UnityEnvironment(' ')
|
|
model = PPOModel(env.brains["RealFakeBrain"], use_curiosity=True)
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [model.output, model.all_log_probs, model.value, model.entropy,
|
|
model.learning_rate, model.intrinsic_reward]
|
|
feed_dict = {model.batch_size: 2,
|
|
model.sequence_length: 1,
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3],
|
|
[3, 4, 5, 3, 4, 5]]),
|
|
model.next_vector_in: np.array([[1, 2, 3, 1, 2, 3],
|
|
[3, 4, 5, 3, 4, 5]]),
|
|
model.output: [[0.0, 0.0], [0.0, 0.0]]}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
env.close()
|
|
|
|
|
|
@mock.patch('mlagents.envs.UnityEnvironment.executable_launcher')
|
|
@mock.patch('mlagents.envs.UnityEnvironment.get_communicator')
|
|
def test_ppo_model_dc_visual_curio(mock_communicator, mock_launcher):
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=True, visual_inputs=2)
|
|
env = UnityEnvironment(' ')
|
|
model = PPOModel(env.brains["RealFakeBrain"], use_curiosity=True)
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [model.output, model.all_log_probs, model.value, model.entropy,
|
|
model.learning_rate, model.intrinsic_reward]
|
|
feed_dict = {model.batch_size: 2,
|
|
model.sequence_length: 1,
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3],
|
|
[3, 4, 5, 3, 4, 5]]),
|
|
model.next_vector_in: np.array([[1, 2, 3, 1, 2, 3],
|
|
[3, 4, 5, 3, 4, 5]]),
|
|
model.action_holder: [[0], [0]],
|
|
model.visual_in[0]: np.ones([2, 40, 30, 3]),
|
|
model.visual_in[1]: np.ones([2, 40, 30, 3]),
|
|
model.next_visual_in[0]: np.ones([2, 40, 30, 3]),
|
|
model.next_visual_in[1]: np.ones([2, 40, 30, 3]),
|
|
model.action_masks: np.ones([2,2])
|
|
}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
env.close()
|
|
|
|
|
|
@mock.patch('mlagents.envs.UnityEnvironment.executable_launcher')
|
|
@mock.patch('mlagents.envs.UnityEnvironment.get_communicator')
|
|
def test_ppo_model_cc_visual_curio(mock_communicator, mock_launcher):
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=False, visual_inputs=2)
|
|
env = UnityEnvironment(' ')
|
|
model = PPOModel(env.brains["RealFakeBrain"], use_curiosity=True)
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [model.output, model.all_log_probs, model.value, model.entropy,
|
|
model.learning_rate, model.intrinsic_reward]
|
|
feed_dict = {model.batch_size: 2,
|
|
model.sequence_length: 1,
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3],
|
|
[3, 4, 5, 3, 4, 5]]),
|
|
model.next_vector_in: np.array([[1, 2, 3, 1, 2, 3],
|
|
[3, 4, 5, 3, 4, 5]]),
|
|
model.output: [[0.0, 0.0], [0.0, 0.0]],
|
|
model.visual_in[0]: np.ones([2, 40, 30, 3]),
|
|
model.visual_in[1]: np.ones([2, 40, 30, 3]),
|
|
model.next_visual_in[0]: np.ones([2, 40, 30, 3]),
|
|
model.next_visual_in[1]: np.ones([2, 40, 30, 3])
|
|
}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
env.close()
|
|
|
|
|
|
def test_rl_functions():
|
|
rewards = np.array([0.0, 0.0, 0.0, 1.0])
|
|
gamma = 0.9
|
|
returns = discount_rewards(rewards, gamma, 0.0)
|
|
np.testing.assert_array_almost_equal(returns, np.array([0.729, 0.81, 0.9, 1.0]))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
pytest.main()
|