您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
53 行
2.3 KiB
53 行
2.3 KiB
# # Unity ML-Agents Toolkit
|
|
# ## ML-Agent Learning (Behavioral Cloning)
|
|
# Contains an implementation of Behavioral Cloning Algorithm
|
|
|
|
import logging
|
|
|
|
from mlagents.trainers.bc.trainer import BCTrainer
|
|
from mlagents.trainers.demo_loader import demo_to_buffer
|
|
from mlagents.trainers.trainer import UnityTrainerException
|
|
|
|
logger = logging.getLogger("mlagents.trainers")
|
|
|
|
|
|
class OfflineBCTrainer(BCTrainer):
|
|
"""The OfflineBCTrainer is an implementation of Offline Behavioral Cloning."""
|
|
|
|
def __init__(self, brain, trainer_parameters, training, load, seed, run_id):
|
|
"""
|
|
Responsible for collecting experiences and training PPO model.
|
|
:param trainer_parameters: The parameters for the trainer (dictionary).
|
|
:param training: Whether the trainer is set for training.
|
|
:param load: Whether the model should be loaded.
|
|
:param seed: The seed the model will be initialized with
|
|
:param run_id: The The identifier of the current run
|
|
"""
|
|
super(OfflineBCTrainer, self).__init__(
|
|
brain, trainer_parameters, training, load, seed, run_id)
|
|
|
|
self.param_keys = ['batch_size', 'summary_freq', 'max_steps',
|
|
'batches_per_epoch', 'use_recurrent',
|
|
'hidden_units', 'learning_rate', 'num_layers',
|
|
'sequence_length', 'memory_size', 'model_path',
|
|
'demo_path']
|
|
|
|
self.check_param_keys()
|
|
self.batches_per_epoch = trainer_parameters['batches_per_epoch']
|
|
self.n_sequences = max(int(trainer_parameters['batch_size'] / self.policy.sequence_length),
|
|
1)
|
|
|
|
brain_params, self.demonstration_buffer = demo_to_buffer(
|
|
trainer_parameters['demo_path'],
|
|
self.policy.sequence_length)
|
|
|
|
print(brain.__dict__)
|
|
print(brain_params.__dict__)
|
|
if brain.__dict__ != brain_params.__dict__:
|
|
raise UnityTrainerException("The provided demonstration is not compatible with the "
|
|
"brain being used for performance evaluation.")
|
|
|
|
def __str__(self):
|
|
return '''Hyperparameters for the Imitation Trainer of brain {0}: \n{1}'''.format(
|
|
self.brain_name, '\n'.join(
|
|
['\t{0}:\t{1}'.format(x, self.trainer_parameters[x]) for x in self.param_keys]))
|