您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
209 行
7.9 KiB
209 行
7.9 KiB
using System;
|
|
using System.Collections.Generic;
|
|
using UnityEngine;
|
|
using System.Linq;
|
|
using Barracuda;
|
|
using MLAgents.InferenceBrain;
|
|
using UnityEngine.Profiling;
|
|
|
|
namespace MLAgents
|
|
{
|
|
public enum InferenceDevice
|
|
{
|
|
CPU = 0,
|
|
GPU = 1
|
|
}
|
|
|
|
/// <summary>
|
|
/// The Learning Brain works differently if you are training it or not.
|
|
/// When training your Agents, the LearningBrain will be controlled by Python.
|
|
/// When using a pretrained model, just drag the Model file into the
|
|
/// Model property of the Learning Brain and do not launch the Python training process.
|
|
/// The training will start automatically if Python is ready to train and there is at
|
|
/// least one LearningBrain in the scene.
|
|
/// The property model corresponds to the Model currently attached to the Brain. Before
|
|
/// being used, a call to ReloadModel is required.
|
|
/// When the Learning Brain is not training, it uses a TensorFlow model to make decisions.
|
|
/// The Proximal Policy Optimization (PPO) and Behavioral Cloning algorithms included with
|
|
/// the ML-Agents SDK produce trained TensorFlow models that you can use with the
|
|
/// Learning Brain.
|
|
/// </summary>
|
|
[CreateAssetMenu(fileName = "NewLearningBrain", menuName = "ML-Agents/Learning Brain")]
|
|
public class LearningBrain : Brain
|
|
{
|
|
private ITensorAllocator m_TensorAllocator;
|
|
private TensorGenerator m_TensorGenerator;
|
|
private TensorApplier m_TensorApplier;
|
|
public NNModel model;
|
|
private Model m_BarracudaModel;
|
|
private IWorker m_Engine;
|
|
private bool m_Verbose = false;
|
|
|
|
private BarracudaModelParamLoader m_ModelParamLoader;
|
|
private string[] m_OutputNames;
|
|
|
|
[Tooltip("Inference execution device. CPU is the fastest option for most of ML Agents models. " +
|
|
"(This field is not applicable for training).")]
|
|
public InferenceDevice inferenceDevice = InferenceDevice.CPU;
|
|
|
|
private IReadOnlyList<TensorProxy> m_InferenceInputs;
|
|
private IReadOnlyList<TensorProxy> m_InferenceOutputs;
|
|
|
|
protected ICommunicator m_Communicator;
|
|
|
|
/// <summary>
|
|
/// Sets the Communicator of the Brain. The brain will call the communicator at every step and give
|
|
/// it the agent's data using PutObservations at each DecideAction call.
|
|
/// </summary>
|
|
/// <param name="communicator"> The Batcher the brain will use for the current session</param>
|
|
private void SetCommunicator(ICommunicator communicator)
|
|
{
|
|
m_Communicator = communicator;
|
|
m_Communicator?.SubscribeBrain(name, brainParameters);
|
|
LazyInitialize();
|
|
|
|
}
|
|
|
|
/// <inheritdoc />
|
|
protected override void Initialize()
|
|
{
|
|
ReloadModel();
|
|
var comm = FindObjectOfType<Academy>()?.Communicator;
|
|
SetCommunicator(comm);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Initializes the Brain with the Model that it will use when selecting actions for
|
|
/// the agents
|
|
/// </summary>
|
|
/// <param name="seed"> The seed that will be used to initialize the RandomNormal
|
|
/// and Multinomial obsjects used when running inference.</param>
|
|
/// <exception cref="UnityAgentsException">Throws an error when the model is null
|
|
/// </exception>
|
|
public void ReloadModel(int seed = 0)
|
|
{
|
|
if (m_TensorAllocator == null)
|
|
m_TensorAllocator = new TensorCachingAllocator();
|
|
|
|
if (model != null)
|
|
{
|
|
#if BARRACUDA_VERBOSE
|
|
_verbose = true;
|
|
#endif
|
|
|
|
D.logEnabled = m_Verbose;
|
|
|
|
// Cleanup previous instance
|
|
if (m_Engine != null)
|
|
m_Engine.Dispose();
|
|
|
|
m_BarracudaModel = ModelLoader.Load(model.Value);
|
|
var executionDevice = inferenceDevice == InferenceDevice.GPU
|
|
? BarracudaWorkerFactory.Type.ComputePrecompiled
|
|
: BarracudaWorkerFactory.Type.CSharp;
|
|
|
|
m_Engine = BarracudaWorkerFactory.CreateWorker(executionDevice, m_BarracudaModel, m_Verbose);
|
|
}
|
|
else
|
|
{
|
|
m_BarracudaModel = null;
|
|
m_Engine = null;
|
|
}
|
|
|
|
m_ModelParamLoader = BarracudaModelParamLoader.GetLoaderAndCheck(m_Engine, m_BarracudaModel, brainParameters);
|
|
m_InferenceInputs = m_ModelParamLoader.GetInputTensors();
|
|
m_OutputNames = m_ModelParamLoader.GetOutputNames();
|
|
m_TensorGenerator = new TensorGenerator(brainParameters, seed, m_TensorAllocator, m_BarracudaModel);
|
|
m_TensorApplier = new TensorApplier(brainParameters, seed, m_TensorAllocator, m_BarracudaModel);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Return a list of failed checks corresponding to the failed compatibility checks
|
|
/// between the Model and the BrainParameters. Note : This does not reload the model.
|
|
/// If changes have been made to the BrainParameters or the Model, the model must be
|
|
/// reloaded using GiveModel before trying to get the compatibility checks.
|
|
/// </summary>
|
|
/// <returns> The list of the failed compatibility checks between the Model and the
|
|
/// Brain Parameters</returns>
|
|
public IEnumerable<string> GetModelFailedChecks()
|
|
{
|
|
return (m_ModelParamLoader != null) ? m_ModelParamLoader.GetChecks() : new List<string>();
|
|
}
|
|
|
|
/// <inheritdoc />
|
|
protected override void DecideAction()
|
|
{
|
|
if (m_Communicator != null)
|
|
{
|
|
m_Communicator?.PutObservations(name, m_Agents);
|
|
return;
|
|
}
|
|
var currentBatchSize = m_Agents.Count;
|
|
if (currentBatchSize == 0)
|
|
{
|
|
return;
|
|
}
|
|
|
|
Profiler.BeginSample("LearningBrain.DecideAction");
|
|
if (m_Engine == null)
|
|
{
|
|
Debug.LogError($"No model was present for the Brain {name}.");
|
|
return;
|
|
}
|
|
|
|
Profiler.BeginSample($"MLAgents.{name}.GenerateTensors");
|
|
// Prepare the input tensors to be feed into the engine
|
|
m_TensorGenerator.GenerateTensors(m_InferenceInputs, currentBatchSize, m_Agents);
|
|
Profiler.EndSample();
|
|
|
|
Profiler.BeginSample($"MLAgents.{name}.PrepareBarracudaInputs");
|
|
var inputs = PrepareBarracudaInputs(m_InferenceInputs);
|
|
Profiler.EndSample();
|
|
|
|
// Execute the Model
|
|
Profiler.BeginSample($"MLAgents.{name}.ExecuteGraph");
|
|
m_Engine.Execute(inputs);
|
|
Profiler.EndSample();
|
|
|
|
Profiler.BeginSample($"MLAgents.{name}.FetchBarracudaOutputs");
|
|
m_InferenceOutputs = FetchBarracudaOutputs(m_OutputNames);
|
|
Profiler.EndSample();
|
|
|
|
Profiler.BeginSample($"MLAgents.{name}.ApplyTensors");
|
|
// Update the outputs
|
|
m_TensorApplier.ApplyTensors(m_InferenceOutputs, m_Agents);
|
|
Profiler.EndSample();
|
|
|
|
Profiler.EndSample();
|
|
}
|
|
|
|
protected Dictionary<string, Tensor> PrepareBarracudaInputs(IEnumerable<TensorProxy> infInputs)
|
|
{
|
|
var inputs = new Dictionary<string, Tensor>();
|
|
foreach (var inp in m_InferenceInputs)
|
|
{
|
|
inputs[inp.name] = inp.data;
|
|
}
|
|
|
|
return inputs;
|
|
}
|
|
|
|
protected List<TensorProxy> FetchBarracudaOutputs(string[] names)
|
|
{
|
|
var outputs = new List<TensorProxy>();
|
|
foreach (var n in names)
|
|
{
|
|
var output = m_Engine.Peek(n);
|
|
outputs.Add(TensorUtils.TensorProxyFromBarracuda(output, n));
|
|
}
|
|
|
|
return outputs;
|
|
}
|
|
|
|
public void OnDisable()
|
|
{
|
|
m_Engine?.Dispose();
|
|
m_TensorAllocator?.Reset(false);
|
|
}
|
|
}
|
|
}
|