Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

77 行
2.9 KiB

import os
import torch
from mlagents_envs.logging_util import get_logger
from mlagents.trainers.settings import SerializationSettings
logger = get_logger(__name__)
class ModelSerializer:
def __init__(self, policy):
self.policy = policy
batch_dim = [1]
dummy_vec_obs = [torch.zeros(batch_dim + [self.policy.vec_obs_size])]
dummy_vis_obs = (
[torch.zeros(batch_dim + list(self.policy.vis_obs_shape))]
if self.policy.vis_obs_size > 0
else []
)
dummy_masks = torch.ones(batch_dim + [sum(self.policy.actor_critic.act_size)])
dummy_memories = torch.zeros(batch_dim + [1] + [self.policy.m_size])
# Need to pass all posslible inputs since currently keyword arguments is not
# supported by torch.nn.export()
self.dummy_input = (dummy_vec_obs, dummy_vis_obs, dummy_masks, dummy_memories)
# Input names can only contain actual input used since in torch.nn.export
# it maps input_names only to input nodes that exist in the graph
self.input_names = []
self.dynamic_axes = {"action": {0: "batch"}, "action_probs": {0: "batch"}}
if self.policy.use_vec_obs:
self.input_names.append("vector_observation")
self.dynamic_axes.update({"vector_observation": {0: "batch"}})
if self.policy.use_vis_obs:
self.input_names.append("visual_observation")
self.dynamic_axes.update({"visual_observation": {0: "batch"}})
if not self.policy.use_continuous_act:
self.input_names.append("action_masks")
self.dynamic_axes.update({"action_masks": {0: "batch"}})
if self.policy.use_recurrent:
self.input_names.append("memories")
self.dynamic_axes.update({"memories": {0: "batch"}})
self.output_names = [
"action",
"action_probs",
"version_number",
"memory_size",
"is_continuous_control",
"action_output_shape",
]
def export_policy_model(self, output_filepath: str) -> None:
"""
Exports a Torch model for a Policy to .onnx format for Unity embedding.
:param output_filepath: file path to output the model (without file suffix)
:param brain_name: Brain name of brain to be trained
"""
if not os.path.exists(output_filepath):
os.makedirs(output_filepath)
onnx_output_path = f"{output_filepath}.onnx"
logger.info(f"Converting to {onnx_output_path}")
torch.onnx.export(
self.policy.actor_critic,
self.dummy_input,
onnx_output_path,
verbose=False,
opset_version=SerializationSettings.onnx_opset,
input_names=self.input_names,
output_names=self.output_names,
dynamic_axes=self.dynamic_axes,
)
logger.info(f"Exported {onnx_output_path}")