Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

48 行
1.3 KiB

from abc import ABC, abstractmethod
from typing import List, Dict, NamedTuple, Optional
from mlagents.envs.brain import AllBrainInfo, BrainParameters
from mlagents.envs.policy import Policy
from mlagents.envs.action_info import ActionInfo
class EnvironmentStep(NamedTuple):
previous_all_brain_info: Optional[AllBrainInfo]
current_all_brain_info: AllBrainInfo
brain_name_to_action_info: Optional[Dict[str, ActionInfo]]
def has_actions_for_brain(self, brain_name: str) -> bool:
return (
self.brain_name_to_action_info is not None
and brain_name in self.brain_name_to_action_info
and self.brain_name_to_action_info[brain_name].outputs is not None
)
class EnvManager(ABC):
def __init__(self):
self.policies: Dict[str, Policy] = {}
def set_policy(self, brain_name: str, policy: Policy) -> None:
self.policies[brain_name] = policy
@abstractmethod
def step(self) -> List[EnvironmentStep]:
pass
@abstractmethod
def reset(self, config: Dict = None) -> List[EnvironmentStep]:
pass
@property
@abstractmethod
def external_brains(self) -> Dict[str, BrainParameters]:
pass
@property
@abstractmethod
def get_properties(self) -> Dict[str, float]:
pass
@abstractmethod
def close(self):
pass