Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

476 行
17 KiB

import attr
import cattr
from typing import Dict, Optional, List, Any, DefaultDict, Mapping
from enum import Enum
import collections
import argparse
from mlagents.trainers.cli_utils import StoreConfigFile, DetectDefault, parser
from mlagents.trainers.cli_utils import load_config
from mlagents.trainers.exception import TrainerConfigError
from mlagents.trainers.models import ScheduleType, EncoderType
from mlagents_envs import logging_util
logger = logging_util.get_logger(__name__)
def check_and_structure(key: str, value: Any, class_type: type) -> Any:
attr_fields_dict = attr.fields_dict(class_type)
if key not in attr_fields_dict:
raise TrainerConfigError(
f"The option {key} was specified in your YAML file for {class_type.__name__}, but is invalid."
)
# Apply cattr structure to the values
return cattr.structure(value, attr_fields_dict[key].type)
def strict_to_cls(d: Mapping, t: type) -> Any:
if not isinstance(d, Mapping):
raise TrainerConfigError(f"Unsupported config {d} for {t.__name__}.")
d_copy: Dict[str, Any] = {}
d_copy.update(d)
for key, val in d_copy.items():
d_copy[key] = check_and_structure(key, val, t)
return t(**d_copy)
def defaultdict_to_dict(d: DefaultDict) -> Dict:
return {key: cattr.unstructure(val) for key, val in d.items()}
@attr.s(auto_attribs=True)
class ExportableSettings:
def as_dict(self):
return cattr.unstructure(self)
@attr.s(auto_attribs=True)
class NetworkSettings:
@attr.s(auto_attribs=True)
class MemorySettings:
sequence_length: int = 64
memory_size: int = 128
normalize: bool = False
hidden_units: int = 128
num_layers: int = 2
vis_encode_type: EncoderType = EncoderType.SIMPLE
memory: Optional[MemorySettings] = None
@attr.s(auto_attribs=True)
class BehavioralCloningSettings:
demo_path: str
steps: int = 0
strength: float = 1.0
samples_per_update: int = 0
# Setting either of these to None will allow the Optimizer
# to decide these parameters, based on Trainer hyperparams
num_epoch: Optional[int] = None
batch_size: Optional[int] = None
@attr.s(auto_attribs=True)
class HyperparamSettings:
batch_size: int = 1024
buffer_size: int = 10240
learning_rate: float = 3.0e-4
learning_rate_schedule: ScheduleType = ScheduleType.CONSTANT
@attr.s(auto_attribs=True)
class PPOSettings(HyperparamSettings):
beta: float = 5.0e-3
epsilon: float = 0.2
lambd: float = 0.95
num_epoch: int = 3
learning_rate_schedule: ScheduleType = ScheduleType.LINEAR
@attr.s(auto_attribs=True)
class SACSettings(HyperparamSettings):
batch_size: int = 128
buffer_size: int = 50000
buffer_init_steps: int = 0
tau: float = 0.005
steps_per_update: float = 1
save_replay_buffer: bool = False
init_entcoef: float = 1.0
reward_signal_steps_per_update: float = attr.ib()
@reward_signal_steps_per_update.default
def _reward_signal_steps_per_update_default(self):
return self.steps_per_update
class RewardSignalType(Enum):
EXTRINSIC: str = "extrinsic"
GAIL: str = "gail"
CURIOSITY: str = "curiosity"
def to_settings(self) -> type:
_mapping = {
RewardSignalType.EXTRINSIC: RewardSignalSettings,
RewardSignalType.GAIL: GAILSettings,
RewardSignalType.CURIOSITY: CuriositySettings,
}
return _mapping[self]
@attr.s(auto_attribs=True)
class RewardSignalSettings:
gamma: float = 0.99
strength: float = 1.0
@staticmethod
def structure(d: Mapping, t: type) -> Any:
"""
Helper method to structure a Dict of RewardSignalSettings class. Meant to be registered with
cattr.register_structure_hook() and called with cattr.structure(). This is needed to handle
the special Enum selection of RewardSignalSettings classes.
"""
if not isinstance(d, Mapping):
raise TrainerConfigError(f"Unsupported reward signal configuration {d}.")
d_final: Dict[RewardSignalType, RewardSignalSettings] = {}
for key, val in d.items():
enum_key = RewardSignalType(key)
t = enum_key.to_settings()
d_final[enum_key] = strict_to_cls(val, t)
return d_final
@attr.s(auto_attribs=True)
class GAILSettings(RewardSignalSettings):
encoding_size: int = 64
learning_rate: float = 3e-4
use_actions: bool = False
use_vail: bool = False
demo_path: str = attr.ib(kw_only=True)
@attr.s(auto_attribs=True)
class CuriositySettings(RewardSignalSettings):
encoding_size: int = 64
learning_rate: float = 3e-4
class ParameterRandomizationType(Enum):
UNIFORM: str = "uniform"
GAUSSIAN: str = "gaussian"
MULTIRANGEUNIFORM: str = "multirangeuniform"
def to_settings(self) -> type:
_mapping = {
ParameterRandomizationType.UNIFORM: UniformSettings,
ParameterRandomizationType.GAUSSIAN: GaussianSettings,
ParameterRandomizationType.MULTIRANGEUNIFORM: MultiRangeUniformSettings,
}
return _mapping[self]
@attr.s(auto_attribs=True)
class ParameterRandomizationSettings:
seed: int = parser.get_default("seed")
@staticmethod
def structure(d: Mapping, t: type) -> Any:
"""
Helper method to structure a Dict of ParameterRandomizationSettings class. Meant to be registered with
cattr.register_structure_hook() and called with cattr.structure(). This is needed to handle
the special Enum selection of ParameterRandomizationSettings classes.
"""
if not isinstance(d, Mapping):
raise TrainerConfigError(
f"Unsupported parameter randomization configuration {d}."
)
d_final: Dict[str, List[float]] = {}
for param, param_config in d.items():
if param == "resampling-interval":
logger.warning(
"The resampling-interval is no longer necessary for parameter randomization. It is being ignored."
)
continue
if not isinstance(param_config, Mapping):
raise TrainerConfigError(
f"Unsupported distribution configuration {param_config}."
)
for key, val in param_config.items():
enum_key = ParameterRandomizationType(key)
t = enum_key.to_settings()
d_final[param] = strict_to_cls(val, t)
return d_final
@attr.s(auto_attribs=True)
class UniformSettings(ParameterRandomizationSettings):
min_value: float = attr.ib()
max_value: float = 1.0
@min_value.default
def _min_value_default(self):
return 1.0
@min_value.validator
def _check_min_value(self, attribute, value):
if self.min_value > self.max_value:
raise TrainerConfigError(
"Minimum value is greater than maximum value in uniform sampler."
)
@attr.s(auto_attribs=True)
class GaussianSettings(ParameterRandomizationSettings):
mean: float = 1.0
st_dev: float = 1.0
@attr.s(auto_attribs=True)
class MultiRangeUniformSettings(ParameterRandomizationSettings):
intervals: List[List[float]] = attr.ib()
@intervals.default
def _intervals_default(self):
return [[1.0, 1.0]]
@intervals.validator
def _check_intervals(self, attribute, value):
for interval in self.intervals:
if len(interval) != 2:
raise TrainerConfigError(
f"The sampling interval {interval} must contain exactly two values."
)
[min_value, max_value] = interval
if min_value > max_value:
raise TrainerConfigError(
f"Minimum value is greater than maximum value in interval {interval}."
)
def to_float_encoding(self) -> List[float]:
"Returns the sampler type followed by a flattened list of the interval values"
return [value for interval in self.intervals for value in interval]
@attr.s(auto_attribs=True)
class SelfPlaySettings:
save_steps: int = 20000
team_change: int = attr.ib()
@team_change.default
def _team_change_default(self):
# Assign team_change to about 4x save_steps
return self.save_steps * 5
swap_steps: int = 2000
window: int = 10
play_against_latest_model_ratio: float = 0.5
initial_elo: float = 1200.0
class TrainerType(Enum):
PPO: str = "ppo"
SAC: str = "sac"
def to_settings(self) -> type:
_mapping = {TrainerType.PPO: PPOSettings, TrainerType.SAC: SACSettings}
return _mapping[self]
@attr.s(auto_attribs=True)
class TrainerSettings(ExportableSettings):
trainer_type: TrainerType = TrainerType.PPO
hyperparameters: HyperparamSettings = attr.ib()
@hyperparameters.default
def _set_default_hyperparameters(self):
return self.trainer_type.to_settings()()
network_settings: NetworkSettings = attr.ib(factory=NetworkSettings)
reward_signals: Dict[RewardSignalType, RewardSignalSettings] = attr.ib(
factory=lambda: {RewardSignalType.EXTRINSIC: RewardSignalSettings()}
)
init_path: Optional[str] = None
output_path: str = "default"
keep_checkpoints: int = 5
checkpoint_interval: int = 500000
max_steps: int = 500000
time_horizon: int = 64
summary_freq: int = 50000
threaded: bool = True
self_play: Optional[SelfPlaySettings] = None
behavioral_cloning: Optional[BehavioralCloningSettings] = None
cattr.register_structure_hook(
Dict[RewardSignalType, RewardSignalSettings], RewardSignalSettings.structure
)
@network_settings.validator
def _check_batch_size_seq_length(self, attribute, value):
if self.network_settings.memory is not None:
if (
self.network_settings.memory.sequence_length
> self.hyperparameters.batch_size
):
raise TrainerConfigError(
"When using memory, sequence length must be less than or equal to batch size. "
)
@staticmethod
def dict_to_defaultdict(d: Dict, t: type) -> DefaultDict:
return collections.defaultdict(
TrainerSettings, cattr.structure(d, Dict[str, TrainerSettings])
)
@staticmethod
def structure(d: Mapping, t: type) -> Any:
"""
Helper method to structure a TrainerSettings class. Meant to be registered with
cattr.register_structure_hook() and called with cattr.structure().
"""
if not isinstance(d, Mapping):
raise TrainerConfigError(f"Unsupported config {d} for {t.__name__}.")
d_copy: Dict[str, Any] = {}
d_copy.update(d)
for key, val in d_copy.items():
if attr.has(type(val)):
# Don't convert already-converted attrs classes.
continue
if key == "hyperparameters":
if "trainer_type" not in d_copy:
raise TrainerConfigError(
"Hyperparameters were specified but no trainer_type was given."
)
else:
d_copy[key] = strict_to_cls(
d_copy[key], TrainerType(d_copy["trainer_type"]).to_settings()
)
elif key == "max_steps":
d_copy[key] = int(float(val))
# In some legacy configs, max steps was specified as a float
else:
d_copy[key] = check_and_structure(key, val, t)
return t(**d_copy)
@attr.s(auto_attribs=True)
class CurriculumSettings:
class MeasureType:
PROGRESS: str = "progress"
REWARD: str = "reward"
measure: str = attr.ib(default=MeasureType.REWARD)
thresholds: List[int] = attr.ib(factory=list)
min_lesson_length: int = 0
signal_smoothing: bool = True
parameters: Dict[str, List[float]] = attr.ib(kw_only=True)
@attr.s(auto_attribs=True)
class CheckpointSettings:
run_id: str = parser.get_default("run_id")
initialize_from: str = parser.get_default("initialize_from")
load_model: bool = parser.get_default("load_model")
resume: bool = parser.get_default("resume")
force: bool = parser.get_default("force")
train_model: bool = parser.get_default("train_model")
inference: bool = parser.get_default("inference")
@attr.s(auto_attribs=True)
class EnvironmentSettings:
env_path: Optional[str] = parser.get_default("env_path")
env_args: Optional[List[str]] = parser.get_default("env_args")
base_port: int = parser.get_default("base_port")
num_envs: int = parser.get_default("num_envs")
seed: int = parser.get_default("seed")
@attr.s(auto_attribs=True)
class EngineSettings:
width: int = parser.get_default("width")
height: int = parser.get_default("height")
quality_level: int = parser.get_default("quality_level")
time_scale: float = parser.get_default("time_scale")
target_frame_rate: int = parser.get_default("target_frame_rate")
capture_frame_rate: int = parser.get_default("capture_frame_rate")
no_graphics: bool = parser.get_default("no_graphics")
@attr.s(auto_attribs=True)
class RunOptions(ExportableSettings):
behaviors: DefaultDict[str, TrainerSettings] = attr.ib(
factory=lambda: collections.defaultdict(TrainerSettings)
)
env_settings: EnvironmentSettings = attr.ib(factory=EnvironmentSettings)
engine_settings: EngineSettings = attr.ib(factory=EngineSettings)
parameter_randomization: Optional[Dict[str, ParameterRandomizationSettings]] = None
curriculum: Optional[Dict[str, CurriculumSettings]] = None
checkpoint_settings: CheckpointSettings = attr.ib(factory=CheckpointSettings)
# These are options that are relevant to the run itself, and not the engine or environment.
# They will be left here.
debug: bool = parser.get_default("debug")
# Strict conversion
cattr.register_structure_hook(EnvironmentSettings, strict_to_cls)
cattr.register_structure_hook(EngineSettings, strict_to_cls)
cattr.register_structure_hook(CheckpointSettings, strict_to_cls)
cattr.register_structure_hook(
Dict[str, ParameterRandomizationSettings],
ParameterRandomizationSettings.structure,
)
cattr.register_structure_hook(CurriculumSettings, strict_to_cls)
cattr.register_structure_hook(TrainerSettings, TrainerSettings.structure)
cattr.register_structure_hook(
DefaultDict[str, TrainerSettings], TrainerSettings.dict_to_defaultdict
)
cattr.register_unstructure_hook(collections.defaultdict, defaultdict_to_dict)
@staticmethod
def from_argparse(args: argparse.Namespace) -> "RunOptions":
"""
Takes an argparse.Namespace as specified in `parse_command_line`, loads input configuration files
from file paths, and converts to a RunOptions instance.
:param args: collection of command-line parameters passed to mlagents-learn
:return: RunOptions representing the passed in arguments, with trainer config, curriculum and sampler
configs loaded from files.
"""
argparse_args = vars(args)
config_path = StoreConfigFile.trainer_config_path
# Load YAML
configured_dict: Dict[str, Any] = {
"checkpoint_settings": {},
"env_settings": {},
"engine_settings": {},
}
if config_path is not None:
configured_dict.update(load_config(config_path))
# Use the YAML file values for all values not specified in the CLI.
for key in configured_dict.keys():
# Detect bad config options
if key not in attr.fields_dict(RunOptions):
raise TrainerConfigError(
"The option {} was specified in your YAML file, but is invalid.".format(
key
)
)
# Override with CLI args
# Keep deprecated --load working, TODO: remove
argparse_args["resume"] = argparse_args["resume"] or argparse_args["load_model"]
for key, val in argparse_args.items():
if key in DetectDefault.non_default_args:
if key in attr.fields_dict(CheckpointSettings):
configured_dict["checkpoint_settings"][key] = val
elif key in attr.fields_dict(EnvironmentSettings):
configured_dict["env_settings"][key] = val
elif key in attr.fields_dict(EngineSettings):
configured_dict["engine_settings"][key] = val
else: # Base options
configured_dict[key] = val
return RunOptions.from_dict(configured_dict)
@staticmethod
def from_dict(options_dict: Dict[str, Any]) -> "RunOptions":
return cattr.structure(options_dict, RunOptions)