Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

8.4 KiB

Unity ML-Agents Python Interface and Trainers

The mlagents Python package is part of the ML-Agents Toolkit. mlagents provides a Python API that allows direct interaction with the Unity game engine as well as a collection of trainers and algorithms to train agents in Unity environments.

The mlagents Python package contains two components: a low level API which allows you to interact directly with a Unity Environment (mlagents.envs) and an entry point to train (mlagents-learn) which allows you to train agents in Unity Environments using our implementations of reinforcement learning or imitation learning.

mlagents.envs

The ML-Agents Toolkit provides a Python API for controlling the Agent simulation loop of an environment or game built with Unity. This API is used by the training algorithms inside the ML-Agent Toolkit, but you can also write your own Python programs using this API. Go here for a Jupyter Notebook walking through the functionality of the API.

The key objects in the Python API include:

  • UnityEnvironment — the main interface between the Unity application and your code. Use UnityEnvironment to start and control a simulation or training session.
  • BrainInfo — contains all the data from Agents in the simulation, such as observations and rewards.
  • BrainParameters — describes the data elements in a BrainInfo object. For example, provides the array length of an observation in BrainInfo.

These classes are all defined in the ml-agents/mlagents/envs folder of the ML-Agents SDK.

To communicate with an Agent in a Unity environment from a Python program, the Agent must use a LearningBrain. Your code is expected to return actions for Agents with LearningBrains.

Notice: Currently communication between Unity and Python takes place over an open socket without authentication. As such, please make sure that the network where training takes place is secure. This will be addressed in a future release.

Loading a Unity Environment

Python-side communication happens through UnityEnvironment which is located in ml-agents/mlagents/envs. To load a Unity environment from a built binary file, put the file in the same directory as envs. For example, if the filename of your Unity environment is 3DBall.app, in python, run:

from mlagents.envs.environment import UnityEnvironment
env = UnityEnvironment(file_name="3DBall", worker_id=0, seed=1)
  • file_name is the name of the environment binary (located in the root directory of the python project).
  • worker_id indicates which port to use for communication with the environment. For use in parallel training regimes such as A3C.
  • seed indicates the seed to use when generating random numbers during the training process. In environments which do not involve physics calculations, setting the seed enables reproducible experimentation by ensuring that the environment and trainers utilize the same random seed.

If you want to directly interact with the Editor, you need to use file_name=None, then press the ▶️ button in the Editor when the message "Start training by pressing the Play button in the Unity Editor" is displayed on the screen

Interacting with a Unity Environment

A BrainInfo object contains the following fields:

  • visual_observations : A list of 4 dimensional numpy arrays. Matrix n of the list corresponds to the nth observation of the Brain.
  • vector_observations : A two dimensional numpy array of dimension (batch size, vector observation size).
  • rewards : A list as long as the number of Agents using the Brain containing the rewards they each obtained at the previous step.
  • local_done : A list as long as the number of Agents using the Brain containing done flags (whether or not the Agent is done).
  • max_reached : A list as long as the number of Agents using the Brain containing true if the Agents reached their max steps.
  • agents : A list of the unique ids of the Agents using the Brain.

Once loaded, you can use your UnityEnvironment object, which referenced by a variable named env in this example, can be used in the following way:

  • Print : print(str(env)) Prints all parameters relevant to the loaded environment and the Brains.
  • Reset : env.reset() Send a reset signal to the environment, and provides a dictionary mapping Brain names to BrainInfo objects.
  • Step : env.step(action) Sends a step signal to the environment using the actions. For each Brain :
    • action can be one dimensional arrays or two dimensional arrays if you have multiple Agents per Brain.

      Returns a dictionary mapping Brain names to BrainInfo objects.

      For example, to access the BrainInfo belonging to a Brain called 'brain_name', and the BrainInfo field 'vector_observations':

      info = env.step()
      brainInfo = info['brain_name']
      observations = brainInfo.vector_observations
      

      Note that if you have more than one LearningBrain in the scene, you must provide dictionaries from Brain names to arrays for action, memory and value. For example: If you have two Learning Brains named brain1 and brain2 each with one Agent taking two continuous actions, then you can have:

      action = {'brain1':[1.0, 2.0], 'brain2':[3.0,4.0]}
      

      Returns a dictionary mapping Brain names to BrainInfo objects.

  • Close : env.close() Sends a shutdown signal to the environment and closes the communication socket.

Modifying the environment from Python

The Environment can be modified by using side channels to send data to the environment. When creating the environment, pass a list of side channels as side_channels argument to the constructor.

Note : A side channel will only send/receive messages when env.step is called.

EngineConfigurationChannel

An EngineConfiguration will allow you to modify the time scale and graphics quality of the Unity engine. EngineConfigurationChannel has two methods :

  • set_configuration_parameters with arguments
    • width: Defines the width of the display. Default 80.
    • height: Defines the height of the display. Default 80.
    • quality_level: Defines the quality level of the simulation. Default 1.
    • time_scale: Defines the multiplier for the deltatime in the simulation. If set to a higher value, time will pass faster in the simulation but the physics might break. Default 20.
    • target_frame_rate: Instructs simulation to try to render at a specified frame rate. Default -1.
  • set_configuration with argument config which is an EngineConfig NamedTuple object.

For example :

from mlagents.envs.environment import UnityEnvironment
from mlagents.envs.side_channel.engine_configuration_channel import EngineConfigurationChannel

channel = EngineConfigurationChannel()

env = UnityEnvironment(base_port = 5004, side_channels = [channel])

channel.set_configuration_parameters(time_scale = 2.0)

i = env.reset()
...

FloatPropertiesChannel

A FloatPropertiesChannel will allow you to get and set float properties in the environment. You can call get_property and set_property on the side channel to read and write properties. FloatPropertiesChannel has three methods:

  • set_property Sets a property in the Unity Environment.
  • key: The string identifier of the property.
  • value: The float value of the property.
  • get_property Gets a property in the Unity Environment. If the property was not found, will return None.
  • key: The string identifier of the property.
  • list_properties Returns a list of all the string identifiers of the properties
from mlagents.envs.environment import UnityEnvironment
from mlagents.envs.side_channel.float_properties_channel import FloatPropertiesChannel

channel = FloatPropertiesChannel()

env = UnityEnvironment(base_port = 5004, side_channels = [channel])

channel.set_property("parameter_1", 2.0)

i = env.reset()
...

Once a property has been modified in Python, you can access it in C# after the next call to step as follows:

var academy = FindObjectOfType<Academy>();
var sharedProperties = academy.FloatProperties;
float property1 = sharedProperties.GetPropertyWithDefault("parameter_1", 0.0f);

mlagents-learn

For more detailed documentation on using mlagents-learn, check out Training ML-Agents