Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

102 行
4.7 KiB

# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: mlagents/envs/communicator_objects/brain_parameters.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))
from google.protobuf import descriptor as _descriptor
from google.protobuf import message as _message
from google.protobuf import reflection as _reflection
from google.protobuf import symbol_database as _symbol_database
from google.protobuf import descriptor_pb2
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
from mlagents.envs.communicator_objects import space_type_pb2 as mlagents_dot_envs_dot_communicator__objects_dot_space__type__pb2
DESCRIPTOR = _descriptor.FileDescriptor(
name='mlagents/envs/communicator_objects/brain_parameters.proto',
package='communicator_objects',
syntax='proto3',
serialized_pb=_b('\n9mlagents/envs/communicator_objects/brain_parameters.proto\x12\x14\x63ommunicator_objects\x1a\x33mlagents/envs/communicator_objects/space_type.proto\"\xd9\x01\n\x14\x42rainParametersProto\x12\x1a\n\x12vector_action_size\x18\x03 \x03(\x05\x12\"\n\x1avector_action_descriptions\x18\x05 \x03(\t\x12\x46\n\x18vector_action_space_type\x18\x06 \x01(\x0e\x32$.communicator_objects.SpaceTypeProto\x12\x12\n\nbrain_name\x18\x07 \x01(\t\x12\x13\n\x0bis_training\x18\x08 \x01(\x08J\x04\x08\x01\x10\x02J\x04\x08\x02\x10\x03J\x04\x08\x04\x10\x05\x42\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
,
dependencies=[mlagents_dot_envs_dot_communicator__objects_dot_space__type__pb2.DESCRIPTOR,])
_BRAINPARAMETERSPROTO = _descriptor.Descriptor(
name='BrainParametersProto',
full_name='communicator_objects.BrainParametersProto',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='vector_action_size', full_name='communicator_objects.BrainParametersProto.vector_action_size', index=0,
number=3, type=5, cpp_type=1, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='vector_action_descriptions', full_name='communicator_objects.BrainParametersProto.vector_action_descriptions', index=1,
number=5, type=9, cpp_type=9, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='vector_action_space_type', full_name='communicator_objects.BrainParametersProto.vector_action_space_type', index=2,
number=6, type=14, cpp_type=8, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='brain_name', full_name='communicator_objects.BrainParametersProto.brain_name', index=3,
number=7, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='is_training', full_name='communicator_objects.BrainParametersProto.is_training', index=4,
number=8, type=8, cpp_type=7, label=1,
has_default_value=False, default_value=False,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=137,
serialized_end=354,
)
_BRAINPARAMETERSPROTO.fields_by_name['vector_action_space_type'].enum_type = mlagents_dot_envs_dot_communicator__objects_dot_space__type__pb2._SPACETYPEPROTO
DESCRIPTOR.message_types_by_name['BrainParametersProto'] = _BRAINPARAMETERSPROTO
_sym_db.RegisterFileDescriptor(DESCRIPTOR)
BrainParametersProto = _reflection.GeneratedProtocolMessageType('BrainParametersProto', (_message.Message,), dict(
DESCRIPTOR = _BRAINPARAMETERSPROTO,
__module__ = 'mlagents.envs.communicator_objects.brain_parameters_pb2'
# @@protoc_insertion_point(class_scope:communicator_objects.BrainParametersProto)
))
_sym_db.RegisterMessage(BrainParametersProto)
DESCRIPTOR.has_options = True
DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('\252\002\034MLAgents.CommunicatorObjects'))
# @@protoc_insertion_point(module_scope)