您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
254 行
7.8 KiB
254 行
7.8 KiB
import unittest.mock as mock
|
|
import pytest
|
|
import mlagents.trainers.tests.mock_brain as mb
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
import yaml
|
|
import os
|
|
|
|
from mlagents.trainers.ppo.models import PPOModel
|
|
from mlagents.trainers.ppo.trainer import discount_rewards
|
|
from mlagents.trainers.ppo.policy import PPOPolicy
|
|
from mlagents.trainers.sac.policy import SACPolicy
|
|
from mlagents.trainers.demo_loader import make_demo_buffer
|
|
from mlagents.envs import UnityEnvironment
|
|
from mlagents.envs.mock_communicator import MockCommunicator
|
|
|
|
|
|
def ppo_dummy_config():
|
|
return yaml.safe_load(
|
|
"""
|
|
trainer: ppo
|
|
batch_size: 32
|
|
beta: 5.0e-3
|
|
buffer_size: 512
|
|
epsilon: 0.2
|
|
hidden_units: 128
|
|
lambd: 0.95
|
|
learning_rate: 3.0e-4
|
|
max_steps: 5.0e4
|
|
normalize: true
|
|
num_epoch: 5
|
|
num_layers: 2
|
|
time_horizon: 64
|
|
sequence_length: 64
|
|
summary_freq: 1000
|
|
use_recurrent: false
|
|
memory_size: 8
|
|
reward_signals:
|
|
extrinsic:
|
|
strength: 1.0
|
|
gamma: 0.99
|
|
"""
|
|
)
|
|
|
|
|
|
def sac_dummy_config():
|
|
return yaml.safe_load(
|
|
"""
|
|
trainer: sac
|
|
batch_size: 128
|
|
buffer_size: 50000
|
|
buffer_init_steps: 0
|
|
hidden_units: 128
|
|
init_entcoef: 1.0
|
|
learning_rate: 3.0e-4
|
|
max_steps: 5.0e4
|
|
memory_size: 256
|
|
normalize: false
|
|
num_update: 1
|
|
train_interval: 1
|
|
num_layers: 2
|
|
time_horizon: 64
|
|
sequence_length: 64
|
|
summary_freq: 1000
|
|
tau: 0.005
|
|
use_recurrent: false
|
|
vis_encode_type: default
|
|
pretraining:
|
|
demo_path: ./demos/ExpertPyramid.demo
|
|
strength: 1.0
|
|
steps: 10000000
|
|
reward_signals:
|
|
extrinsic:
|
|
strength: 1.0
|
|
gamma: 0.99
|
|
"""
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def gail_dummy_config():
|
|
return {
|
|
"gail": {
|
|
"strength": 0.1,
|
|
"gamma": 0.9,
|
|
"encoding_size": 128,
|
|
"demo_path": os.path.dirname(os.path.abspath(__file__)) + "/test.demo",
|
|
}
|
|
}
|
|
|
|
|
|
@pytest.fixture
|
|
def curiosity_dummy_config():
|
|
return {"curiosity": {"strength": 0.1, "gamma": 0.9, "encoding_size": 128}}
|
|
|
|
|
|
VECTOR_ACTION_SPACE = [2]
|
|
VECTOR_OBS_SPACE = 8
|
|
DISCRETE_ACTION_SPACE = [3, 3, 3, 2]
|
|
BUFFER_INIT_SAMPLES = 20
|
|
NUM_AGENTS = 12
|
|
|
|
|
|
def create_policy_mock(
|
|
mock_env, trainer_config, reward_signal_config, use_rnn, use_discrete, use_visual
|
|
):
|
|
env, mock_brain, _ = mb.setup_mock_env_and_brains(
|
|
mock_env,
|
|
use_discrete,
|
|
use_visual,
|
|
num_agents=NUM_AGENTS,
|
|
vector_action_space=VECTOR_ACTION_SPACE,
|
|
vector_obs_space=VECTOR_OBS_SPACE,
|
|
discrete_action_space=DISCRETE_ACTION_SPACE,
|
|
)
|
|
|
|
trainer_parameters = trainer_config
|
|
model_path = env.brain_names[0]
|
|
trainer_parameters["model_path"] = model_path
|
|
trainer_parameters["keep_checkpoints"] = 3
|
|
trainer_parameters["reward_signals"].update(reward_signal_config)
|
|
trainer_parameters["use_recurrent"] = use_rnn
|
|
if trainer_config["trainer"] == "ppo":
|
|
policy = PPOPolicy(0, mock_brain, trainer_parameters, False, False)
|
|
else:
|
|
policy = SACPolicy(0, mock_brain, trainer_parameters, False, False)
|
|
return env, policy
|
|
|
|
|
|
def reward_signal_eval(env, policy, reward_signal_name):
|
|
brain_infos = env.reset()
|
|
brain_info = brain_infos[env.brain_names[0]]
|
|
next_brain_info = env.step()[env.brain_names[0]]
|
|
# Test evaluate
|
|
rsig_result = policy.reward_signals[reward_signal_name].evaluate(
|
|
brain_info, next_brain_info
|
|
)
|
|
assert rsig_result.scaled_reward.shape == (NUM_AGENTS,)
|
|
assert rsig_result.unscaled_reward.shape == (NUM_AGENTS,)
|
|
|
|
|
|
def reward_signal_update(env, policy, reward_signal_name):
|
|
buffer = mb.simulate_rollout(env, policy, BUFFER_INIT_SAMPLES)
|
|
feed_dict = policy.reward_signals[reward_signal_name].prepare_update(
|
|
policy.model, buffer.update_buffer.make_mini_batch(0, 10), 2
|
|
)
|
|
out = policy._execute_model(
|
|
feed_dict, policy.reward_signals[reward_signal_name].update_dict
|
|
)
|
|
assert type(out) is dict
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
|
|
)
|
|
@mock.patch("mlagents.envs.UnityEnvironment")
|
|
def test_gail_cc(mock_env, trainer_config, gail_dummy_config):
|
|
env, policy = create_policy_mock(
|
|
mock_env, trainer_config, gail_dummy_config, False, False, False
|
|
)
|
|
reward_signal_eval(env, policy, "gail")
|
|
reward_signal_update(env, policy, "gail")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
|
|
)
|
|
@mock.patch("mlagents.envs.UnityEnvironment")
|
|
def test_gail_dc_visual(mock_env, trainer_config, gail_dummy_config):
|
|
gail_dummy_config["gail"]["demo_path"] = (
|
|
os.path.dirname(os.path.abspath(__file__)) + "/testdcvis.demo"
|
|
)
|
|
env, policy = create_policy_mock(
|
|
mock_env, trainer_config, gail_dummy_config, False, True, True
|
|
)
|
|
reward_signal_eval(env, policy, "gail")
|
|
reward_signal_update(env, policy, "gail")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
|
|
)
|
|
@mock.patch("mlagents.envs.UnityEnvironment")
|
|
def test_gail_rnn(mock_env, trainer_config, gail_dummy_config):
|
|
env, policy = create_policy_mock(
|
|
mock_env, trainer_config, gail_dummy_config, True, False, False
|
|
)
|
|
reward_signal_eval(env, policy, "gail")
|
|
reward_signal_update(env, policy, "gail")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
|
|
)
|
|
@mock.patch("mlagents.envs.UnityEnvironment")
|
|
def test_curiosity_cc(mock_env, trainer_config, curiosity_dummy_config):
|
|
env, policy = create_policy_mock(
|
|
mock_env, trainer_config, curiosity_dummy_config, False, False, False
|
|
)
|
|
reward_signal_eval(env, policy, "curiosity")
|
|
reward_signal_update(env, policy, "curiosity")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
|
|
)
|
|
@mock.patch("mlagents.envs.UnityEnvironment")
|
|
def test_curiosity_dc(mock_env, trainer_config, curiosity_dummy_config):
|
|
env, policy = create_policy_mock(
|
|
mock_env, trainer_config, curiosity_dummy_config, False, True, False
|
|
)
|
|
reward_signal_eval(env, policy, "curiosity")
|
|
reward_signal_update(env, policy, "curiosity")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
|
|
)
|
|
@mock.patch("mlagents.envs.UnityEnvironment")
|
|
def test_curiosity_visual(mock_env, trainer_config, curiosity_dummy_config):
|
|
env, policy = create_policy_mock(
|
|
mock_env, trainer_config, curiosity_dummy_config, False, False, True
|
|
)
|
|
reward_signal_eval(env, policy, "curiosity")
|
|
reward_signal_update(env, policy, "curiosity")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
|
|
)
|
|
@mock.patch("mlagents.envs.UnityEnvironment")
|
|
def test_curiosity_rnn(mock_env, trainer_config, curiosity_dummy_config):
|
|
env, policy = create_policy_mock(
|
|
mock_env, trainer_config, curiosity_dummy_config, True, False, False
|
|
)
|
|
reward_signal_eval(env, policy, "curiosity")
|
|
reward_signal_update(env, policy, "curiosity")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
|
|
)
|
|
@mock.patch("mlagents.envs.UnityEnvironment")
|
|
def test_extrinsic(mock_env, trainer_config, curiosity_dummy_config):
|
|
env, policy = create_policy_mock(
|
|
mock_env, trainer_config, curiosity_dummy_config, False, False, False
|
|
)
|
|
reward_signal_eval(env, policy, "extrinsic")
|
|
reward_signal_update(env, policy, "extrinsic")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main()
|