您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
142 行
6.1 KiB
142 行
6.1 KiB
from typing import Any, Dict, List
|
|
import numpy as np
|
|
from mlagents.tf_utils import tf
|
|
|
|
from mlagents.trainers.brain import BrainInfo
|
|
|
|
from mlagents.trainers.components.reward_signals import RewardSignal, RewardSignalResult
|
|
from mlagents.trainers.components.reward_signals.curiosity.model import CuriosityModel
|
|
from mlagents.trainers.tf_policy import TFPolicy
|
|
from mlagents.trainers.models import LearningModel
|
|
|
|
|
|
class CuriosityRewardSignal(RewardSignal):
|
|
def __init__(
|
|
self,
|
|
policy: TFPolicy,
|
|
policy_model: LearningModel,
|
|
strength: float,
|
|
gamma: float,
|
|
encoding_size: int = 128,
|
|
learning_rate: float = 3e-4,
|
|
):
|
|
"""
|
|
Creates the Curiosity reward generator
|
|
:param policy: The Learning Policy
|
|
:param strength: The scaling parameter for the reward. The scaled reward will be the unscaled
|
|
reward multiplied by the strength parameter
|
|
:param gamma: The time discounting factor used for this reward.
|
|
:param encoding_size: The size of the hidden encoding layer for the ICM
|
|
:param learning_rate: The learning rate for the ICM.
|
|
"""
|
|
super().__init__(policy, policy_model, strength, gamma)
|
|
self.model = CuriosityModel(
|
|
policy_model, encoding_size=encoding_size, learning_rate=learning_rate
|
|
)
|
|
self.use_terminal_states = False
|
|
self.update_dict = {
|
|
"curiosity_forward_loss": self.model.forward_loss,
|
|
"curiosity_inverse_loss": self.model.inverse_loss,
|
|
"curiosity_update": self.model.update_batch,
|
|
}
|
|
self.stats_name_to_update_name = {
|
|
"Losses/Curiosity Forward Loss": "curiosity_forward_loss",
|
|
"Losses/Curiosity Inverse Loss": "curiosity_inverse_loss",
|
|
}
|
|
self.has_updated = False
|
|
|
|
def evaluate(
|
|
self, current_info: BrainInfo, action: np.array, next_info: BrainInfo
|
|
) -> RewardSignalResult:
|
|
"""
|
|
Evaluates the reward for the agents present in current_info given the next_info
|
|
:param current_info: The current BrainInfo.
|
|
:param next_info: The BrainInfo from the next timestep.
|
|
:return: a RewardSignalResult of (scaled intrinsic reward, unscaled intrinsic reward) provided by the generator
|
|
"""
|
|
if len(current_info.agents) == 0:
|
|
return RewardSignalResult([], [])
|
|
mini_batch: Dict[str, np.array] = {}
|
|
# Construct the batch and use evaluate_batch
|
|
mini_batch["actions"] = action
|
|
mini_batch["done"] = np.reshape(next_info.local_done, [-1, 1])
|
|
for i in range(len(current_info.visual_observations)):
|
|
mini_batch["visual_obs%d" % i] = current_info.visual_observations[i]
|
|
mini_batch["next_visual_obs%d" % i] = next_info.visual_observations[i]
|
|
if self.policy.use_vec_obs:
|
|
mini_batch["vector_obs"] = current_info.vector_observations
|
|
mini_batch["next_vector_in"] = next_info.vector_observations
|
|
|
|
result = self.evaluate_batch(mini_batch)
|
|
return result
|
|
|
|
def evaluate_batch(self, mini_batch: Dict[str, np.array]) -> RewardSignalResult:
|
|
feed_dict: Dict[tf.Tensor, Any] = {
|
|
self.policy.model.batch_size: len(mini_batch["actions"]),
|
|
self.policy.model.sequence_length: self.policy.sequence_length,
|
|
}
|
|
if self.policy.use_vec_obs:
|
|
feed_dict[self.policy.model.vector_in] = mini_batch["vector_obs"]
|
|
feed_dict[self.model.next_vector_in] = mini_batch["next_vector_in"]
|
|
if self.policy.model.vis_obs_size > 0:
|
|
for i in range(len(self.policy.model.visual_in)):
|
|
_obs = mini_batch["visual_obs%d" % i]
|
|
_next_obs = mini_batch["next_visual_obs%d" % i]
|
|
feed_dict[self.policy.model.visual_in[i]] = _obs
|
|
feed_dict[self.model.next_visual_in[i]] = _next_obs
|
|
|
|
if self.policy.use_continuous_act:
|
|
feed_dict[self.policy.model.selected_actions] = mini_batch["actions"]
|
|
else:
|
|
feed_dict[self.policy.model.action_holder] = mini_batch["actions"]
|
|
unscaled_reward = self.policy.sess.run(
|
|
self.model.intrinsic_reward, feed_dict=feed_dict
|
|
)
|
|
scaled_reward = np.clip(
|
|
unscaled_reward * float(self.has_updated) * self.strength, 0, 1
|
|
)
|
|
return RewardSignalResult(scaled_reward, unscaled_reward)
|
|
|
|
@classmethod
|
|
def check_config(
|
|
cls, config_dict: Dict[str, Any], param_keys: List[str] = None
|
|
) -> None:
|
|
"""
|
|
Checks the config and throw an exception if a hyperparameter is missing. Curiosity requires strength,
|
|
gamma, and encoding size at minimum.
|
|
"""
|
|
param_keys = ["strength", "gamma", "encoding_size"]
|
|
super().check_config(config_dict, param_keys)
|
|
|
|
def prepare_update(
|
|
self,
|
|
policy_model: LearningModel,
|
|
mini_batch: Dict[str, np.ndarray],
|
|
num_sequences: int,
|
|
) -> Dict[tf.Tensor, Any]:
|
|
"""
|
|
Prepare for update and get feed_dict.
|
|
:param num_sequences: Number of trajectories in batch.
|
|
:param mini_batch: Experience batch.
|
|
:return: Feed_dict needed for update.
|
|
"""
|
|
feed_dict = {
|
|
policy_model.batch_size: num_sequences,
|
|
policy_model.sequence_length: self.policy.sequence_length,
|
|
policy_model.mask_input: mini_batch["masks"],
|
|
}
|
|
if self.policy.use_continuous_act:
|
|
feed_dict[policy_model.selected_actions] = mini_batch["actions"]
|
|
else:
|
|
feed_dict[policy_model.action_holder] = mini_batch["actions"]
|
|
if self.policy.use_vec_obs:
|
|
feed_dict[policy_model.vector_in] = mini_batch["vector_obs"]
|
|
feed_dict[self.model.next_vector_in] = mini_batch["next_vector_in"]
|
|
if policy_model.vis_obs_size > 0:
|
|
for i, vis_in in enumerate(policy_model.visual_in):
|
|
feed_dict[vis_in] = mini_batch["visual_obs%d" % i]
|
|
for i, next_vis_in in enumerate(self.model.next_visual_in):
|
|
feed_dict[next_vis_in] = mini_batch["next_visual_obs%d" % i]
|
|
|
|
self.has_updated = True
|
|
return feed_dict
|