Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

481 行
17 KiB

using System;
using System.Collections.Generic;
using UnityEngine;
namespace MLAgents.Sensors
{
/// <summary>
/// Determines which dimensions the sensor will perform the casts in.
/// </summary>
public enum RayPerceptionCastType
{
/// <summary>
/// Cast in 2 dimensions, using Physics2D.CircleCast or Physics2D.RayCast.
/// </summary>
Cast2D,
/// <summary>
/// Cast in 3 dimensions, using Physics.SphereCast or Physics.RayCast.
/// </summary>
Cast3D,
}
/// <summary>
/// Contains the elements that define a ray perception sensor.
/// </summary>
public struct RayPerceptionInput
{
/// <summary>
/// Length of the rays to cast. This will be scaled up or down based on the scale of the transform.
/// </summary>
public float rayLength;
/// <summary>
/// List of tags which correspond to object types agent can see.
/// </summary>
public IReadOnlyList<string> detectableTags;
/// <summary>
/// List of angles (in degrees) used to define the rays.
/// 90 degrees is considered "forward" relative to the game object.
/// </summary>
public IReadOnlyList<float> angles;
/// <summary>
/// Starting height offset of ray from center of agent
/// </summary>
public float startOffset;
/// <summary>
/// Ending height offset of ray from center of agent.
/// </summary>
public float endOffset;
/// <summary>
/// Radius of the sphere to use for spherecasting.
/// If 0 or less, rays are used instead - this may be faster, especially for complex environments.
/// </summary>
public float castRadius;
/// <summary>
/// Transform of the GameObject.
/// </summary>
public Transform transform;
/// <summary>
/// Whether to perform the casts in 2D or 3D.
/// </summary>
public RayPerceptionCastType castType;
/// <summary>
/// Filtering options for the casts.
/// </summary>
public int layerMask;
/// <summary>
/// Returns the expected number of floats in the output.
/// </summary>
/// <returns></returns>
public int OutputSize()
{
return (detectableTags.Count + 2) * angles.Count;
}
/// <summary>
/// Get the cast start and end points for the given ray index/
/// </summary>
/// <param name="rayIndex"></param>
/// <returns>A tuple of the start and end positions in world space.</returns>
public (Vector3 StartPositionWorld, Vector3 EndPositionWorld) RayExtents(int rayIndex)
{
var angle = angles[rayIndex];
Vector3 startPositionLocal, endPositionLocal;
if (castType == RayPerceptionCastType.Cast3D)
{
startPositionLocal = new Vector3(0, startOffset, 0);
endPositionLocal = PolarToCartesian3D(rayLength, angle);
endPositionLocal.y += endOffset;
}
else
{
// Vector2s here get converted to Vector3s (and back to Vector2s for casting)
startPositionLocal = new Vector2();
endPositionLocal = PolarToCartesian2D(rayLength, angle);
}
var startPositionWorld = transform.TransformPoint(startPositionLocal);
var endPositionWorld = transform.TransformPoint(endPositionLocal);
return (StartPositionWorld : startPositionWorld, EndPositionWorld : endPositionWorld);
}
/// <summary>
/// Converts polar coordinate to cartesian coordinate.
/// </summary>
static internal Vector3 PolarToCartesian3D(float radius, float angleDegrees)
{
var x = radius * Mathf.Cos(Mathf.Deg2Rad * angleDegrees);
var z = radius * Mathf.Sin(Mathf.Deg2Rad * angleDegrees);
return new Vector3(x, 0f, z);
}
/// <summary>
/// Converts polar coordinate to cartesian coordinate.
/// </summary>
static internal Vector2 PolarToCartesian2D(float radius, float angleDegrees)
{
var x = radius * Mathf.Cos(Mathf.Deg2Rad * angleDegrees);
var y = radius * Mathf.Sin(Mathf.Deg2Rad * angleDegrees);
return new Vector2(x, y);
}
}
/// <summary>
/// Contains the data generated/produced from a ray perception sensor.
/// </summary>
public class RayPerceptionOutput
{
/// <summary>
/// Contains the data generated from a single ray of a ray perception sensor.
/// </summary>
public struct RayOutput
{
/// <summary>
/// Whether or not the ray hit anything.
/// </summary>
public bool hasHit;
/// <summary>
/// Whether or not the ray hit an object whose tag is in the input's detectableTags list.
/// </summary>
public bool hitTaggedObject;
/// <summary>
/// The index of the hit object's tag in the detectableTags list, or -1 if there was no hit, or the
/// hit object has a different tag.
/// </summary>
public int hitTagIndex;
/// <summary>
/// Normalized distance to the hit object.
/// </summary>
public float hitFraction;
/// <summary>
/// Writes the ray output information to a subset of the float array. Each element in the rayAngles array
/// determines a sublist of data to the observation. The sublist contains the observation data for a single cast.
/// The list is composed of the following:
/// 1. A one-hot encoding for detectable tags. For example, if detectableTags.Length = n, the
/// first n elements of the sublist will be a one-hot encoding of the detectableTag that was hit, or
/// all zeroes otherwise.
/// 2. The 'numDetectableTags' element of the sublist will be 1 if the ray missed everything, or 0 if it hit
/// something (detectable or not).
/// 3. The 'numDetectableTags+1' element of the sublist will contain the normalized distance to the object
/// hit, or 1.0 if nothing was hit.
/// </summary>
/// <param name="numDetectableTags"></param>
/// <param name="rayIndex"></param>
/// <param name="buffer">Output buffer. The size must be equal to (numDetectableTags+2) * rayOutputs.Length</param>
public void ToFloatArray(int numDetectableTags, int rayIndex, float[] buffer)
{
var bufferOffset = (numDetectableTags + 2) * rayIndex;
if (hitTaggedObject)
{
buffer[bufferOffset + hitTagIndex] = 1f;
}
buffer[bufferOffset + numDetectableTags] = hasHit ? 0f : 1f;
buffer[bufferOffset + numDetectableTags + 1] = hitFraction;
}
}
/// <summary>
/// RayOutput for each ray that was cast.
/// </summary>
public RayOutput[] rayOutputs;
}
/// <summary>
/// Debug information for the raycast hits. This is used by the RayPerceptionSensorComponent.
/// </summary>
internal class DebugDisplayInfo
{
public struct RayInfo
{
public Vector3 worldStart;
public Vector3 worldEnd;
public float castRadius;
public RayPerceptionOutput.RayOutput rayOutput;
}
public void Reset()
{
m_Frame = Time.frameCount;
}
/// <summary>
/// "Age" of the results in number of frames. This is used to adjust the alpha when drawing.
/// </summary>
public int age
{
get { return Time.frameCount - m_Frame; }
}
public RayInfo[] rayInfos;
int m_Frame;
}
/// <summary>
/// A sensor implementation that supports ray cast-based observations.
/// </summary>
public class RayPerceptionSensor : ISensor
{
float[] m_Observations;
int[] m_Shape;
string m_Name;
RayPerceptionInput m_RayPerceptionInput;
DebugDisplayInfo m_DebugDisplayInfo;
internal DebugDisplayInfo debugDisplayInfo
{
get { return m_DebugDisplayInfo; }
}
/// <summary>
/// Creates the RayPerceptionSensor.
/// </summary>
/// <param name="name">The name of the sensor.</param>
/// <param name="rayInput">The inputs for the sensor.</param>
public RayPerceptionSensor(string name, RayPerceptionInput rayInput)
{
m_Name = name;
m_RayPerceptionInput = rayInput;
SetNumObservations(rayInput.OutputSize());
if (Application.isEditor)
{
m_DebugDisplayInfo = new DebugDisplayInfo();
}
}
void SetNumObservations(int numObservations)
{
m_Shape = new[] { numObservations };
m_Observations = new float[numObservations];
}
internal void SetRayPerceptionInput(RayPerceptionInput rayInput)
{
// Note that change the number of rays or tags doesn't directly call this,
// but changing them and then changing another field will.
if (m_RayPerceptionInput.OutputSize() != rayInput.OutputSize())
{
Debug.Log(
"Changing the number of tags or rays at runtime is not " +
"supported and may cause errors in training or inference."
);
// Changing the shape will probably break things downstream, but we can at least
// keep this consistent.
SetNumObservations(rayInput.OutputSize());
}
m_RayPerceptionInput = rayInput;
}
/// <summary>
/// Computes the ray perception observations and saves them to the provided
/// <see cref="WriteAdapter"/>.
/// </summary>
/// <param name="adapter">Where the ray perception observations are written to.</param>
/// <returns></returns>
public int Write(WriteAdapter adapter)
{
using (TimerStack.Instance.Scoped("RayPerceptionSensor.Perceive"))
{
Array.Clear(m_Observations, 0, m_Observations.Length);
var numRays = m_RayPerceptionInput.angles.Count;
var numDetectableTags = m_RayPerceptionInput.detectableTags.Count;
if (m_DebugDisplayInfo != null)
{
// Reset the age information, and resize the buffer if needed.
m_DebugDisplayInfo.Reset();
if (m_DebugDisplayInfo.rayInfos == null || m_DebugDisplayInfo.rayInfos.Length != numRays)
{
m_DebugDisplayInfo.rayInfos = new DebugDisplayInfo.RayInfo[numRays];
}
}
// For each ray, do the casting, and write the information to the observation buffer
for (var rayIndex = 0; rayIndex < numRays; rayIndex++)
{
DebugDisplayInfo.RayInfo debugRay;
var rayOutput = PerceiveSingleRay(m_RayPerceptionInput, rayIndex, out debugRay);
if (m_DebugDisplayInfo != null)
{
m_DebugDisplayInfo.rayInfos[rayIndex] = debugRay;
}
rayOutput.ToFloatArray(numDetectableTags, rayIndex, m_Observations);
}
// Finally, add the observations to the WriteAdapter
adapter.AddRange(m_Observations);
}
return m_Observations.Length;
}
/// <inheritdoc/>
public void Update()
{
}
/// <inheritdoc/>
public int[] GetObservationShape()
{
return m_Shape;
}
/// <inheritdoc/>
public string GetName()
{
return m_Name;
}
/// <inheritdoc/>
public virtual byte[] GetCompressedObservation()
{
return null;
}
/// <inheritdoc/>
public virtual SensorCompressionType GetCompressionType()
{
return SensorCompressionType.None;
}
/// <summary>
/// Evaluates the raycasts to be used as part of an observation of an agent.
/// </summary>
/// <param name="input">Input defining the rays that will be cast.</param>
/// <returns>Output struct containing the raycast results.</returns>
public static RayPerceptionOutput Perceive(RayPerceptionInput input)
{
RayPerceptionOutput output = new RayPerceptionOutput();
output.rayOutputs = new RayPerceptionOutput.RayOutput[input.angles.Count];
for (var rayIndex = 0; rayIndex < input.angles.Count; rayIndex++)
{
DebugDisplayInfo.RayInfo debugRay;
output.rayOutputs[rayIndex] = PerceiveSingleRay(input, rayIndex, out debugRay);
}
return output;
}
/// <summary>
/// Evaluate the raycast results of a single ray from the RayPerceptionInput.
/// </summary>
/// <param name="input"></param>
/// <param name="rayIndex"></param>
/// <param name="debugRayOut"></param>
/// <returns></returns>
internal static RayPerceptionOutput.RayOutput PerceiveSingleRay(
RayPerceptionInput input,
int rayIndex,
out DebugDisplayInfo.RayInfo debugRayOut
)
{
var unscaledRayLength = input.rayLength;
var unscaledCastRadius = input.castRadius;
var extents = input.RayExtents(rayIndex);
var startPositionWorld = extents.StartPositionWorld;
var endPositionWorld = extents.EndPositionWorld;
var rayDirection = endPositionWorld - startPositionWorld;
// If there is non-unity scale, |rayDirection| will be different from rayLength.
// We want to use this transformed ray length for determining cast length, hit fraction etc.
// We also it to scale up or down the sphere or circle radii
var scaledRayLength = rayDirection.magnitude;
// Avoid 0/0 if unscaledRayLength is 0
var scaledCastRadius = unscaledRayLength > 0 ?
unscaledCastRadius * scaledRayLength / unscaledRayLength :
unscaledCastRadius;
// Do the cast and assign the hit information for each detectable tag.
bool castHit;
float hitFraction;
GameObject hitObject;
if (input.castType == RayPerceptionCastType.Cast3D)
{
RaycastHit rayHit;
if (scaledCastRadius > 0f)
{
castHit = Physics.SphereCast(startPositionWorld, scaledCastRadius, rayDirection, out rayHit,
scaledRayLength, input.layerMask);
}
else
{
castHit = Physics.Raycast(startPositionWorld, rayDirection, out rayHit,
scaledRayLength, input.layerMask);
}
// If scaledRayLength is 0, we still could have a hit with sphere casts (maybe?).
// To avoid 0/0, set the fraction to 0.
hitFraction = castHit ? (scaledRayLength > 0 ? rayHit.distance / scaledRayLength : 0.0f) : 1.0f;
hitObject = castHit ? rayHit.collider.gameObject : null;
}
else
{
RaycastHit2D rayHit;
if (scaledCastRadius > 0f)
{
rayHit = Physics2D.CircleCast(startPositionWorld, scaledCastRadius, rayDirection,
scaledRayLength, input.layerMask);
}
else
{
rayHit = Physics2D.Raycast(startPositionWorld, rayDirection, scaledRayLength, input.layerMask);
}
castHit = rayHit;
hitFraction = castHit ? rayHit.fraction : 1.0f;
hitObject = castHit ? rayHit.collider.gameObject : null;
}
var rayOutput = new RayPerceptionOutput.RayOutput
{
hasHit = castHit,
hitFraction = hitFraction,
hitTaggedObject = false,
hitTagIndex = -1
};
if (castHit)
{
// Find the index of the tag of the object that was hit.
for (var i = 0; i < input.detectableTags.Count; i++)
{
if (hitObject.CompareTag(input.detectableTags[i]))
{
rayOutput.hitTaggedObject = true;
rayOutput.hitTagIndex = i;
break;
}
}
}
debugRayOut.worldStart = startPositionWorld;
debugRayOut.worldEnd = endPositionWorld;
debugRayOut.rayOutput = rayOutput;
debugRayOut.castRadius = scaledCastRadius;
return rayOutput;
}
}
}