Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

115 行
3.7 KiB

from typing import List, NamedTuple
import numpy as np
from mlagents.trainers.buffer import AgentBuffer
from mlagents.envs.exception import UnityException
class AgentExperience(NamedTuple):
obs: List[np.ndarray]
reward: float
done: bool
action: np.ndarray
action_probs: np.ndarray
action_pre: np.ndarray # TODO: Remove this
action_mask: np.ndarray
prev_action: np.ndarray
max_step: bool
memory: np.ndarray
agent_id: str
class BootstrapExperience(NamedTuple):
"""
A partial AgentExperience needed to bootstrap GAE.
"""
obs: List[np.ndarray]
agent_id: str
class SplitObservations(NamedTuple):
vector_observations: np.ndarray
visual_observations: List[np.ndarray]
class Trajectory(NamedTuple):
steps: List[AgentExperience]
bootstrap_step: BootstrapExperience # The next step after the trajectory. Used for GAE.
class AgentProcessorException(UnityException):
"""
Related to errors with the AgentProcessor.
"""
pass
def split_obs(obs: List[np.ndarray]) -> SplitObservations:
vis_obs_indices = []
vec_obs_indices = []
for index, observation in enumerate(obs):
if len(observation.shape) == 1:
vec_obs_indices.append(index)
if len(observation.shape) == 3:
vis_obs_indices.append(index)
vec_obs = (
np.concatenate([obs[i] for i in vec_obs_indices], axis=0)
if len(vec_obs_indices) > 0
else np.array([], dtype=np.float32)
)
vis_obs = [obs[i] for i in vis_obs_indices]
return SplitObservations(vector_observations=vec_obs, visual_observations=vis_obs)
def trajectory_to_agentbuffer(trajectory: Trajectory) -> AgentBuffer:
"""
Converts a Trajectory to an AgentBuffer
:param trajectory: A Trajectory
:returns: AgentBuffer
"""
agent_buffer_trajectory = AgentBuffer()
for step, exp in enumerate(trajectory.steps):
vec_vis_obs = split_obs(exp.obs)
if step < len(trajectory.steps) - 1:
next_vec_vis_obs = split_obs(trajectory.steps[step + 1].obs)
else:
next_vec_vis_obs = split_obs(trajectory.bootstrap_step.obs)
for i, _ in enumerate(vec_vis_obs.visual_observations):
agent_buffer_trajectory["visual_obs%d" % i].append(
vec_vis_obs.visual_observations[i]
)
agent_buffer_trajectory["next_visual_obs%d" % i].append(
next_vec_vis_obs.visual_observations[i]
)
agent_buffer_trajectory["vector_obs"].append(vec_vis_obs.vector_observations)
agent_buffer_trajectory["next_vector_in"].append(
next_vec_vis_obs.vector_observations
)
if exp.memory is not None:
agent_buffer_trajectory["memory"].append(exp.memory)
agent_buffer_trajectory["masks"].append(1.0)
agent_buffer_trajectory["done"].append(exp.done)
# Add the outputs of the last eval
if exp.action_pre is not None:
actions_pre = exp.action_pre
agent_buffer_trajectory["actions_pre"].append(actions_pre)
# value is a dictionary from name of reward to value estimate of the value head
agent_buffer_trajectory["actions"].append(exp.action)
agent_buffer_trajectory["action_probs"].append(exp.action_probs)
# Store action masks if necessary. Eventually these will be
# None for continuous actions
if exp.action_mask is not None:
agent_buffer_trajectory["action_mask"].append(
exp.action_mask, padding_value=1
)
agent_buffer_trajectory["prev_action"].append(exp.prev_action)
# Add the value outputs if needed
agent_buffer_trajectory["environment_rewards"].append(exp.reward)
return agent_buffer_trajectory