Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

178 行
7.0 KiB

from typing import Dict
import numpy as np
from mlagents.torch_utils import torch
from mlagents.trainers.policy.torch_policy import TorchPolicy
from mlagents.trainers.demo_loader import demo_to_buffer
from mlagents.trainers.buffer import AgentBuffer
from mlagents.trainers.settings import BehavioralCloningSettings, ScheduleType
from mlagents.trainers.torch.agent_action import AgentAction
from mlagents.trainers.torch.action_log_probs import ActionLogProbs
from mlagents.trainers.torch.utils import ModelUtils
class BCModule:
def __init__(
self,
policy: TorchPolicy,
settings: BehavioralCloningSettings,
policy_learning_rate: float,
default_batch_size: int,
default_num_epoch: int,
):
"""
A BC trainer that can be used inline with RL.
:param policy: The policy of the learning model
:param settings: The settings for BehavioralCloning including LR strength, batch_size,
num_epochs, samples_per_update and LR annealing steps.
:param policy_learning_rate: The initial Learning Rate of the policy. Used to set an appropriate learning rate
for the pretrainer.
"""
self.policy = policy
self._anneal_steps = settings.steps
self.current_lr = policy_learning_rate * settings.strength
learning_rate_schedule: ScheduleType = ScheduleType.LINEAR if self._anneal_steps > 0 else ScheduleType.CONSTANT
self.decay_learning_rate = ModelUtils.DecayedValue(
learning_rate_schedule, self.current_lr, 1e-10, self._anneal_steps
)
params = self.policy.actor_critic.parameters()
self.optimizer = torch.optim.Adam(params, lr=self.current_lr)
_, self.demonstration_buffer = demo_to_buffer(
settings.demo_path, policy.sequence_length, policy.behavior_spec
)
self.batch_size = (
settings.batch_size if settings.batch_size else default_batch_size
)
self.num_epoch = settings.num_epoch if settings.num_epoch else default_num_epoch
self.n_sequences = max(
min(self.batch_size, self.demonstration_buffer.num_experiences)
// policy.sequence_length,
1,
)
self.has_updated = False
self.use_recurrent = self.policy.use_recurrent
self.samples_per_update = settings.samples_per_update
def update(self) -> Dict[str, np.ndarray]:
"""
Updates model using buffer.
:param max_batches: The maximum number of batches to use per update.
:return: The loss of the update.
"""
# Don't continue training if the learning rate has reached 0, to reduce training time.
decay_lr = self.decay_learning_rate.get_value(self.policy.get_current_step())
if self.current_lr <= 1e-10: # Unlike in TF, this never actually reaches 0.
return {"Losses/Pretraining Loss": 0}
batch_losses = []
possible_demo_batches = (
self.demonstration_buffer.num_experiences // self.n_sequences
)
possible_batches = possible_demo_batches
max_batches = self.samples_per_update // self.n_sequences
n_epoch = self.num_epoch
for _ in range(n_epoch):
self.demonstration_buffer.shuffle(
sequence_length=self.policy.sequence_length
)
if max_batches == 0:
num_batches = possible_batches
else:
num_batches = min(possible_batches, max_batches)
for i in range(num_batches // self.policy.sequence_length):
demo_update_buffer = self.demonstration_buffer
start = i * self.n_sequences * self.policy.sequence_length
end = (i + 1) * self.n_sequences * self.policy.sequence_length
mini_batch_demo = demo_update_buffer.make_mini_batch(start, end)
run_out = self._update_batch(mini_batch_demo, self.n_sequences)
loss = run_out["loss"]
batch_losses.append(loss)
ModelUtils.update_learning_rate(self.optimizer, decay_lr)
self.current_lr = decay_lr
self.has_updated = True
update_stats = {"Losses/Pretraining Loss": np.mean(batch_losses)}
return update_stats
def _behavioral_cloning_loss(
self,
selected_actions: AgentAction,
log_probs: ActionLogProbs,
expert_actions: torch.Tensor,
) -> torch.Tensor:
bc_loss = 0
if self.policy.behavior_spec.action_spec.continuous_size > 0:
bc_loss += torch.nn.functional.mse_loss(
selected_actions.continuous_tensor, expert_actions.continuous_tensor
)
if self.policy.behavior_spec.action_spec.discrete_size > 0:
one_hot_expert_actions = ModelUtils.actions_to_onehot(
expert_actions.discrete_tensor,
self.policy.behavior_spec.action_spec.discrete_branches,
)
log_prob_branches = ModelUtils.break_into_branches(
log_probs.all_discrete_tensor,
self.policy.behavior_spec.action_spec.discrete_branches,
)
bc_loss += torch.mean(
torch.stack(
[
torch.sum(
-torch.nn.functional.log_softmax(log_prob_branch, dim=1)
* expert_actions_branch,
dim=1,
)
for log_prob_branch, expert_actions_branch in zip(
log_prob_branches, one_hot_expert_actions
)
]
)
)
return bc_loss
def _update_batch(
self, mini_batch_demo: Dict[str, np.ndarray], n_sequences: int
) -> Dict[str, float]:
"""
Helper function for update_batch.
"""
obs = ModelUtils.list_to_tensor_list(
AgentBuffer.obs_list_to_obs_batch(mini_batch_demo["obs"]), dtype=torch.float
)
act_masks = None
expert_actions = AgentAction.from_dict(mini_batch_demo)
if self.policy.behavior_spec.action_spec.discrete_size > 0:
act_masks = ModelUtils.list_to_tensor(
np.ones(
(
self.n_sequences * self.policy.sequence_length,
sum(self.policy.behavior_spec.action_spec.discrete_branches),
),
dtype=np.float32,
)
)
memories = []
if self.policy.use_recurrent:
memories = torch.zeros(1, self.n_sequences, self.policy.m_size)
selected_actions, log_probs, _, _ = self.policy.sample_actions(
obs, masks=act_masks, memories=memories, seq_len=self.policy.sequence_length
)
bc_loss = self._behavioral_cloning_loss(
selected_actions, log_probs, expert_actions
)
self.optimizer.zero_grad()
bc_loss.backward()
self.optimizer.step()
run_out = {"loss": bc_loss.item()}
return run_out