您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
399 行
14 KiB
399 行
14 KiB
import pytest
|
|
import attr
|
|
|
|
|
|
from mlagents.trainers.tests.simple_test_envs import (
|
|
SimpleEnvironment,
|
|
MemoryEnvironment,
|
|
RecordEnvironment,
|
|
)
|
|
|
|
from mlagents.trainers.demo_loader import write_demo
|
|
|
|
from mlagents.trainers.settings import (
|
|
NetworkSettings,
|
|
SelfPlaySettings,
|
|
BehavioralCloningSettings,
|
|
GAILSettings,
|
|
RewardSignalType,
|
|
EncoderType,
|
|
FrameworkType,
|
|
)
|
|
|
|
from mlagents_envs.communicator_objects.demonstration_meta_pb2 import (
|
|
DemonstrationMetaProto,
|
|
)
|
|
from mlagents_envs.communicator_objects.brain_parameters_pb2 import (
|
|
BrainParametersProto,
|
|
ActionSpecProto,
|
|
)
|
|
|
|
from mlagents.trainers.tests.dummy_config import ppo_dummy_config, sac_dummy_config
|
|
from mlagents.trainers.tests.check_env_trains import (
|
|
check_environment_trains,
|
|
default_reward_processor,
|
|
)
|
|
|
|
BRAIN_NAME = "1D"
|
|
|
|
PPO_TORCH_CONFIG = attr.evolve(ppo_dummy_config(), framework=FrameworkType.PYTORCH)
|
|
SAC_TORCH_CONFIG = attr.evolve(sac_dummy_config(), framework=FrameworkType.PYTORCH)
|
|
|
|
|
|
@pytest.mark.parametrize("action_sizes", [(0, 1), (1, 0)])
|
|
def test_simple_ppo(action_sizes):
|
|
env = SimpleEnvironment([BRAIN_NAME], action_sizes=action_sizes)
|
|
config = attr.evolve(PPO_TORCH_CONFIG)
|
|
check_environment_trains(env, {BRAIN_NAME: config})
|
|
|
|
|
|
@pytest.mark.parametrize("action_sizes", [(0, 2), (2, 0)])
|
|
def test_2d_ppo(action_sizes):
|
|
env = SimpleEnvironment([BRAIN_NAME], action_sizes=action_sizes, step_size=0.8)
|
|
new_hyperparams = attr.evolve(
|
|
PPO_TORCH_CONFIG.hyperparameters, batch_size=64, buffer_size=640
|
|
)
|
|
config = attr.evolve(
|
|
PPO_TORCH_CONFIG, hyperparameters=new_hyperparams, max_steps=10000
|
|
)
|
|
check_environment_trains(env, {BRAIN_NAME: config})
|
|
|
|
|
|
@pytest.mark.parametrize("action_sizes", [(0, 1), (1, 0)])
|
|
@pytest.mark.parametrize("num_visual", [1, 2])
|
|
def test_visual_ppo(num_visual, action_sizes):
|
|
env = SimpleEnvironment(
|
|
[BRAIN_NAME],
|
|
action_sizes=action_sizes,
|
|
num_visual=num_visual,
|
|
num_vector=0,
|
|
step_size=0.2,
|
|
)
|
|
new_hyperparams = attr.evolve(
|
|
PPO_TORCH_CONFIG.hyperparameters, learning_rate=3.0e-4
|
|
)
|
|
config = attr.evolve(PPO_TORCH_CONFIG, hyperparameters=new_hyperparams)
|
|
check_environment_trains(env, {BRAIN_NAME: config})
|
|
|
|
|
|
@pytest.mark.parametrize("num_visual", [1, 2])
|
|
@pytest.mark.parametrize("vis_encode_type", ["resnet", "nature_cnn", "match3"])
|
|
def test_visual_advanced_ppo(vis_encode_type, num_visual):
|
|
env = SimpleEnvironment(
|
|
[BRAIN_NAME],
|
|
action_sizes=(0, 1),
|
|
num_visual=num_visual,
|
|
num_vector=0,
|
|
step_size=0.5,
|
|
vis_obs_size=(5, 5, 5) if vis_encode_type == "match3" else (36, 36, 3),
|
|
)
|
|
new_networksettings = attr.evolve(
|
|
SAC_TORCH_CONFIG.network_settings, vis_encode_type=EncoderType(vis_encode_type)
|
|
)
|
|
new_hyperparams = attr.evolve(
|
|
PPO_TORCH_CONFIG.hyperparameters, learning_rate=3.0e-4
|
|
)
|
|
config = attr.evolve(
|
|
PPO_TORCH_CONFIG,
|
|
hyperparameters=new_hyperparams,
|
|
network_settings=new_networksettings,
|
|
max_steps=900,
|
|
summary_freq=100,
|
|
)
|
|
# The number of steps is pretty small for these encoders
|
|
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.5)
|
|
|
|
|
|
@pytest.mark.parametrize("action_sizes", [(0, 1), (1, 0)])
|
|
def test_recurrent_ppo(action_sizes):
|
|
env = MemoryEnvironment([BRAIN_NAME], action_sizes=action_sizes)
|
|
new_network_settings = attr.evolve(
|
|
PPO_TORCH_CONFIG.network_settings,
|
|
memory=NetworkSettings.MemorySettings(memory_size=16),
|
|
)
|
|
new_hyperparams = attr.evolve(
|
|
PPO_TORCH_CONFIG.hyperparameters,
|
|
learning_rate=1.0e-3,
|
|
batch_size=64,
|
|
buffer_size=128,
|
|
)
|
|
config = attr.evolve(
|
|
PPO_TORCH_CONFIG,
|
|
hyperparameters=new_hyperparams,
|
|
network_settings=new_network_settings,
|
|
max_steps=6000,
|
|
)
|
|
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.9)
|
|
|
|
|
|
@pytest.mark.parametrize("action_sizes", [(0, 1), (1, 0)])
|
|
def test_simple_sac(action_sizes):
|
|
env = SimpleEnvironment([BRAIN_NAME], action_sizes=action_sizes)
|
|
config = attr.evolve(SAC_TORCH_CONFIG)
|
|
check_environment_trains(env, {BRAIN_NAME: config})
|
|
|
|
|
|
@pytest.mark.parametrize("action_sizes", [(0, 2), (2, 0)])
|
|
def test_2d_sac(action_sizes):
|
|
env = SimpleEnvironment([BRAIN_NAME], action_sizes=action_sizes, step_size=0.8)
|
|
new_hyperparams = attr.evolve(
|
|
SAC_TORCH_CONFIG.hyperparameters, buffer_init_steps=2000
|
|
)
|
|
config = attr.evolve(
|
|
SAC_TORCH_CONFIG, hyperparameters=new_hyperparams, max_steps=6000
|
|
)
|
|
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.8)
|
|
|
|
|
|
@pytest.mark.parametrize("action_sizes", [(0, 1), (1, 0)])
|
|
@pytest.mark.parametrize("num_visual", [1, 2])
|
|
def test_visual_sac(num_visual, action_sizes):
|
|
env = SimpleEnvironment(
|
|
[BRAIN_NAME],
|
|
action_sizes=action_sizes,
|
|
num_visual=num_visual,
|
|
num_vector=0,
|
|
step_size=0.2,
|
|
)
|
|
new_hyperparams = attr.evolve(
|
|
SAC_TORCH_CONFIG.hyperparameters, batch_size=16, learning_rate=3e-4
|
|
)
|
|
config = attr.evolve(SAC_TORCH_CONFIG, hyperparameters=new_hyperparams)
|
|
check_environment_trains(env, {BRAIN_NAME: config})
|
|
|
|
|
|
@pytest.mark.parametrize("num_visual", [1, 2])
|
|
@pytest.mark.parametrize("vis_encode_type", ["resnet", "nature_cnn", "match3"])
|
|
def test_visual_advanced_sac(vis_encode_type, num_visual):
|
|
env = SimpleEnvironment(
|
|
[BRAIN_NAME],
|
|
action_sizes=(0, 1),
|
|
num_visual=num_visual,
|
|
num_vector=0,
|
|
step_size=0.5,
|
|
vis_obs_size=(5, 5, 5) if vis_encode_type == "match3" else (36, 36, 3),
|
|
)
|
|
new_networksettings = attr.evolve(
|
|
SAC_TORCH_CONFIG.network_settings, vis_encode_type=EncoderType(vis_encode_type)
|
|
)
|
|
new_hyperparams = attr.evolve(
|
|
SAC_TORCH_CONFIG.hyperparameters,
|
|
batch_size=16,
|
|
learning_rate=3e-4,
|
|
buffer_init_steps=0,
|
|
)
|
|
config = attr.evolve(
|
|
SAC_TORCH_CONFIG,
|
|
hyperparameters=new_hyperparams,
|
|
network_settings=new_networksettings,
|
|
max_steps=100,
|
|
)
|
|
# The number of steps is pretty small for these encoders
|
|
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.5)
|
|
|
|
|
|
@pytest.mark.parametrize("action_sizes", [(0, 1), (1, 0)])
|
|
def test_recurrent_sac(action_sizes):
|
|
step_size = 0.2 if action_sizes == (0, 1) else 0.5
|
|
env = MemoryEnvironment(
|
|
[BRAIN_NAME], action_sizes=action_sizes, step_size=step_size
|
|
)
|
|
new_networksettings = attr.evolve(
|
|
SAC_TORCH_CONFIG.network_settings,
|
|
memory=NetworkSettings.MemorySettings(memory_size=16, sequence_length=16),
|
|
)
|
|
new_hyperparams = attr.evolve(
|
|
SAC_TORCH_CONFIG.hyperparameters,
|
|
batch_size=256,
|
|
learning_rate=1e-3,
|
|
buffer_init_steps=1000,
|
|
steps_per_update=2,
|
|
)
|
|
config = attr.evolve(
|
|
SAC_TORCH_CONFIG,
|
|
hyperparameters=new_hyperparams,
|
|
network_settings=new_networksettings,
|
|
max_steps=2000,
|
|
)
|
|
check_environment_trains(env, {BRAIN_NAME: config})
|
|
|
|
|
|
@pytest.mark.parametrize("action_sizes", [(0, 1), (1, 0)])
|
|
def test_simple_ghost(action_sizes):
|
|
env = SimpleEnvironment(
|
|
[BRAIN_NAME + "?team=0", BRAIN_NAME + "?team=1"], action_sizes=action_sizes
|
|
)
|
|
self_play_settings = SelfPlaySettings(
|
|
play_against_latest_model_ratio=1.0, save_steps=2000, swap_steps=2000
|
|
)
|
|
config = attr.evolve(PPO_TORCH_CONFIG, self_play=self_play_settings, max_steps=2500)
|
|
check_environment_trains(env, {BRAIN_NAME: config})
|
|
|
|
|
|
@pytest.mark.parametrize("action_sizes", [(0, 1), (1, 0)])
|
|
def test_simple_ghost_fails(action_sizes):
|
|
env = SimpleEnvironment(
|
|
[BRAIN_NAME + "?team=0", BRAIN_NAME + "?team=1"], action_sizes=action_sizes
|
|
)
|
|
# This config should fail because the ghosted policy is never swapped with a competent policy.
|
|
# Swap occurs after max step is reached.
|
|
self_play_settings = SelfPlaySettings(
|
|
play_against_latest_model_ratio=1.0, save_steps=2000, swap_steps=4000
|
|
)
|
|
config = attr.evolve(PPO_TORCH_CONFIG, self_play=self_play_settings, max_steps=2500)
|
|
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=None)
|
|
processed_rewards = [
|
|
default_reward_processor(rewards) for rewards in env.final_rewards.values()
|
|
]
|
|
success_threshold = 0.9
|
|
assert any(reward > success_threshold for reward in processed_rewards) and any(
|
|
reward < success_threshold for reward in processed_rewards
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("action_sizes", [(0, 1), (1, 0)])
|
|
def test_simple_asymm_ghost(action_sizes):
|
|
# Make opponent for asymmetric case
|
|
brain_name_opp = BRAIN_NAME + "Opp"
|
|
env = SimpleEnvironment(
|
|
[BRAIN_NAME + "?team=0", brain_name_opp + "?team=1"], action_sizes=action_sizes
|
|
)
|
|
self_play_settings = SelfPlaySettings(
|
|
play_against_latest_model_ratio=1.0,
|
|
save_steps=10000,
|
|
swap_steps=10000,
|
|
team_change=400,
|
|
)
|
|
config = attr.evolve(PPO_TORCH_CONFIG, self_play=self_play_settings, max_steps=4000)
|
|
check_environment_trains(env, {BRAIN_NAME: config, brain_name_opp: config})
|
|
|
|
|
|
@pytest.mark.parametrize("action_sizes", [(0, 1), (1, 0)])
|
|
def test_simple_asymm_ghost_fails(action_sizes):
|
|
# Make opponent for asymmetric case
|
|
brain_name_opp = BRAIN_NAME + "Opp"
|
|
env = SimpleEnvironment(
|
|
[BRAIN_NAME + "?team=0", brain_name_opp + "?team=1"], action_sizes=action_sizes
|
|
)
|
|
# This config should fail because the team that us not learning when both have reached
|
|
# max step should be executing the initial, untrained poliy.
|
|
self_play_settings = SelfPlaySettings(
|
|
play_against_latest_model_ratio=0.0,
|
|
save_steps=5000,
|
|
swap_steps=5000,
|
|
team_change=2000,
|
|
)
|
|
config = attr.evolve(PPO_TORCH_CONFIG, self_play=self_play_settings, max_steps=3000)
|
|
check_environment_trains(
|
|
env, {BRAIN_NAME: config, brain_name_opp: config}, success_threshold=None
|
|
)
|
|
processed_rewards = [
|
|
default_reward_processor(rewards) for rewards in env.final_rewards.values()
|
|
]
|
|
success_threshold = 0.9
|
|
assert any(reward > success_threshold for reward in processed_rewards) and any(
|
|
reward < success_threshold for reward in processed_rewards
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def simple_record(tmpdir_factory):
|
|
def record_demo(action_sizes, num_visual=0, num_vector=1):
|
|
env = RecordEnvironment(
|
|
[BRAIN_NAME],
|
|
action_sizes=action_sizes,
|
|
num_visual=num_visual,
|
|
num_vector=num_vector,
|
|
n_demos=100,
|
|
)
|
|
# If we want to use true demos, we can solve the env in the usual way
|
|
# Otherwise, we can just call solve to execute the optimal policy
|
|
env.solve()
|
|
agent_info_protos = env.demonstration_protos[BRAIN_NAME]
|
|
meta_data_proto = DemonstrationMetaProto()
|
|
continuous_action_size, discrete_action_size = action_sizes
|
|
action_spec_proto = ActionSpecProto(
|
|
num_continuous_actions=continuous_action_size,
|
|
num_discrete_actions=discrete_action_size,
|
|
discrete_branch_sizes=[2] if discrete_action_size > 0 else None,
|
|
)
|
|
brain_param_proto = BrainParametersProto(
|
|
brain_name=BRAIN_NAME, is_training=True, action_spec=action_spec_proto
|
|
)
|
|
action_type = "Discrete" if action_sizes else "Continuous"
|
|
demo_path_name = "1DTest" + action_type + ".demo"
|
|
demo_path = str(tmpdir_factory.mktemp("tmp_demo").join(demo_path_name))
|
|
write_demo(demo_path, meta_data_proto, brain_param_proto, agent_info_protos)
|
|
return demo_path
|
|
|
|
return record_demo
|
|
|
|
|
|
@pytest.mark.parametrize("action_sizes", [(0, 1), (1, 0)])
|
|
@pytest.mark.parametrize("trainer_config", [PPO_TORCH_CONFIG, SAC_TORCH_CONFIG])
|
|
def test_gail(simple_record, action_sizes, trainer_config):
|
|
demo_path = simple_record(action_sizes)
|
|
env = SimpleEnvironment([BRAIN_NAME], action_sizes=action_sizes, step_size=0.2)
|
|
bc_settings = BehavioralCloningSettings(demo_path=demo_path, steps=1000)
|
|
reward_signals = {
|
|
RewardSignalType.GAIL: GAILSettings(encoding_size=32, demo_path=demo_path)
|
|
}
|
|
config = attr.evolve(
|
|
trainer_config,
|
|
reward_signals=reward_signals,
|
|
behavioral_cloning=bc_settings,
|
|
max_steps=500,
|
|
)
|
|
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.9)
|
|
|
|
|
|
@pytest.mark.parametrize("action_sizes", [(0, 1), (1, 0)])
|
|
def test_gail_visual_ppo(simple_record, action_sizes):
|
|
demo_path = simple_record(action_sizes, num_visual=1, num_vector=0)
|
|
env = SimpleEnvironment(
|
|
[BRAIN_NAME],
|
|
num_visual=1,
|
|
num_vector=0,
|
|
action_sizes=action_sizes,
|
|
step_size=0.2,
|
|
)
|
|
bc_settings = BehavioralCloningSettings(demo_path=demo_path, steps=1500)
|
|
reward_signals = {
|
|
RewardSignalType.GAIL: GAILSettings(encoding_size=32, demo_path=demo_path)
|
|
}
|
|
hyperparams = attr.evolve(PPO_TORCH_CONFIG.hyperparameters, learning_rate=3e-4)
|
|
config = attr.evolve(
|
|
PPO_TORCH_CONFIG,
|
|
reward_signals=reward_signals,
|
|
hyperparameters=hyperparams,
|
|
behavioral_cloning=bc_settings,
|
|
max_steps=1000,
|
|
)
|
|
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.9)
|
|
|
|
|
|
@pytest.mark.parametrize("action_sizes", [(0, 1), (1, 0)])
|
|
def test_gail_visual_sac(simple_record, action_sizes):
|
|
demo_path = simple_record(action_sizes, num_visual=1, num_vector=0)
|
|
env = SimpleEnvironment(
|
|
[BRAIN_NAME],
|
|
num_visual=1,
|
|
num_vector=0,
|
|
action_sizes=action_sizes,
|
|
step_size=0.2,
|
|
)
|
|
bc_settings = BehavioralCloningSettings(demo_path=demo_path, steps=1000)
|
|
reward_signals = {
|
|
RewardSignalType.GAIL: GAILSettings(encoding_size=32, demo_path=demo_path)
|
|
}
|
|
hyperparams = attr.evolve(
|
|
SAC_TORCH_CONFIG.hyperparameters, learning_rate=3e-4, batch_size=16
|
|
)
|
|
config = attr.evolve(
|
|
SAC_TORCH_CONFIG,
|
|
reward_signals=reward_signals,
|
|
hyperparameters=hyperparams,
|
|
behavioral_cloning=bc_settings,
|
|
max_steps=500,
|
|
)
|
|
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.9)
|