您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
289 行
9.7 KiB
289 行
9.7 KiB
import pytest
|
|
|
|
import numpy as np
|
|
from mlagents.tf_utils import tf
|
|
|
|
from mlagents.trainers.policy.tf_policy import TFPolicy
|
|
from mlagents.trainers.tf.models import ModelUtils, Tensor3DShape
|
|
from mlagents.trainers.exception import UnityTrainerException
|
|
from mlagents.trainers.tests import mock_brain as mb
|
|
from mlagents.trainers.settings import TrainerSettings, NetworkSettings, EncoderType
|
|
from mlagents.trainers.tests.test_trajectory import make_fake_trajectory
|
|
|
|
|
|
VECTOR_ACTION_SPACE = 2
|
|
VECTOR_OBS_SPACE = 8
|
|
DISCRETE_ACTION_SPACE = [3, 3, 3, 2]
|
|
BUFFER_INIT_SAMPLES = 32
|
|
NUM_AGENTS = 12
|
|
EPSILON = 1e-7
|
|
|
|
|
|
def create_policy_mock(
|
|
dummy_config: TrainerSettings,
|
|
use_rnn: bool = False,
|
|
use_discrete: bool = True,
|
|
use_visual: bool = False,
|
|
seed: int = 0,
|
|
) -> TFPolicy:
|
|
mock_spec = mb.setup_test_behavior_specs(
|
|
use_discrete,
|
|
use_visual,
|
|
vector_action_space=DISCRETE_ACTION_SPACE
|
|
if use_discrete
|
|
else VECTOR_ACTION_SPACE,
|
|
vector_obs_space=VECTOR_OBS_SPACE,
|
|
)
|
|
|
|
trainer_settings = dummy_config
|
|
trainer_settings.keep_checkpoints = 3
|
|
trainer_settings.network_settings.memory = (
|
|
NetworkSettings.MemorySettings() if use_rnn else None
|
|
)
|
|
policy = TFPolicy(seed, mock_spec, trainer_settings)
|
|
return policy
|
|
|
|
|
|
def _compare_two_policies(policy1: TFPolicy, policy2: TFPolicy) -> None:
|
|
"""
|
|
Make sure two policies have the same output for the same input.
|
|
"""
|
|
decision_step, _ = mb.create_steps_from_behavior_spec(
|
|
policy1.behavior_spec, num_agents=1
|
|
)
|
|
run_out1 = policy1.evaluate(decision_step, list(decision_step.agent_id))
|
|
run_out2 = policy2.evaluate(decision_step, list(decision_step.agent_id))
|
|
|
|
np.testing.assert_array_equal(run_out2["log_probs"], run_out1["log_probs"])
|
|
|
|
|
|
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
|
|
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
|
|
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
|
|
def test_policy_evaluate(rnn, visual, discrete):
|
|
# Test evaluate
|
|
tf.reset_default_graph()
|
|
policy = create_policy_mock(
|
|
TrainerSettings(), use_rnn=rnn, use_discrete=discrete, use_visual=visual
|
|
)
|
|
decision_step, terminal_step = mb.create_steps_from_behavior_spec(
|
|
policy.behavior_spec, num_agents=NUM_AGENTS
|
|
)
|
|
|
|
run_out = policy.evaluate(decision_step, list(decision_step.agent_id))
|
|
if discrete:
|
|
run_out["action"].shape == (NUM_AGENTS, len(DISCRETE_ACTION_SPACE))
|
|
else:
|
|
assert run_out["action"].shape == (NUM_AGENTS, VECTOR_ACTION_SPACE)
|
|
|
|
|
|
def test_large_normalization():
|
|
behavior_spec = mb.setup_test_behavior_specs(
|
|
use_discrete=True, use_visual=False, vector_action_space=[2], vector_obs_space=1
|
|
)
|
|
# Taken from Walker seed 3713 which causes NaN without proper initialization
|
|
large_obs1 = [
|
|
1800.00036621,
|
|
1799.96972656,
|
|
1800.01245117,
|
|
1800.07214355,
|
|
1800.02758789,
|
|
1799.98303223,
|
|
1799.88647461,
|
|
1799.89575195,
|
|
1800.03479004,
|
|
1800.14025879,
|
|
1800.17675781,
|
|
1800.20581055,
|
|
1800.33740234,
|
|
1800.36450195,
|
|
1800.43457031,
|
|
1800.45544434,
|
|
1800.44604492,
|
|
1800.56713867,
|
|
1800.73901367,
|
|
]
|
|
large_obs2 = [
|
|
1799.99975586,
|
|
1799.96679688,
|
|
1799.92980957,
|
|
1799.89550781,
|
|
1799.93774414,
|
|
1799.95300293,
|
|
1799.94067383,
|
|
1799.92993164,
|
|
1799.84057617,
|
|
1799.69873047,
|
|
1799.70605469,
|
|
1799.82849121,
|
|
1799.85095215,
|
|
1799.76977539,
|
|
1799.78283691,
|
|
1799.76708984,
|
|
1799.67163086,
|
|
1799.59191895,
|
|
1799.5135498,
|
|
1799.45556641,
|
|
1799.3717041,
|
|
]
|
|
policy = TFPolicy(
|
|
0,
|
|
behavior_spec,
|
|
TrainerSettings(network_settings=NetworkSettings(normalize=True)),
|
|
"testdir",
|
|
False,
|
|
)
|
|
time_horizon = len(large_obs1)
|
|
trajectory = make_fake_trajectory(
|
|
length=time_horizon,
|
|
max_step_complete=True,
|
|
observation_shapes=[(1,)],
|
|
action_spec=behavior_spec.action_spec,
|
|
)
|
|
for i in range(time_horizon):
|
|
trajectory.steps[i].obs[0] = np.array([large_obs1[i]], dtype=np.float32)
|
|
trajectory_buffer = trajectory.to_agentbuffer()
|
|
policy.update_normalization(trajectory_buffer["vector_obs"])
|
|
|
|
# Check that the running mean and variance is correct
|
|
steps, mean, variance = policy.sess.run(
|
|
[policy.normalization_steps, policy.running_mean, policy.running_variance]
|
|
)
|
|
assert mean[0] == pytest.approx(np.mean(large_obs1, dtype=np.float32), abs=0.01)
|
|
assert variance[0] / steps == pytest.approx(
|
|
np.var(large_obs1, dtype=np.float32), abs=0.01
|
|
)
|
|
|
|
time_horizon = len(large_obs2)
|
|
trajectory = make_fake_trajectory(
|
|
length=time_horizon,
|
|
max_step_complete=True,
|
|
observation_shapes=[(1,)],
|
|
action_spec=behavior_spec.action_spec,
|
|
)
|
|
for i in range(time_horizon):
|
|
trajectory.steps[i].obs[0] = np.array([large_obs2[i]], dtype=np.float32)
|
|
|
|
trajectory_buffer = trajectory.to_agentbuffer()
|
|
policy.update_normalization(trajectory_buffer["vector_obs"])
|
|
|
|
steps, mean, variance = policy.sess.run(
|
|
[policy.normalization_steps, policy.running_mean, policy.running_variance]
|
|
)
|
|
|
|
assert mean[0] == pytest.approx(
|
|
np.mean(large_obs1 + large_obs2, dtype=np.float32), abs=0.01
|
|
)
|
|
assert variance[0] / steps == pytest.approx(
|
|
np.var(large_obs1 + large_obs2, dtype=np.float32), abs=0.01
|
|
)
|
|
|
|
|
|
def test_normalization():
|
|
behavior_spec = mb.setup_test_behavior_specs(
|
|
use_discrete=True, use_visual=False, vector_action_space=[2], vector_obs_space=1
|
|
)
|
|
time_horizon = 6
|
|
trajectory = make_fake_trajectory(
|
|
length=time_horizon,
|
|
max_step_complete=True,
|
|
observation_shapes=[(1,)],
|
|
action_spec=behavior_spec.action_spec,
|
|
)
|
|
# Change half of the obs to 0
|
|
for i in range(3):
|
|
trajectory.steps[i].obs[0] = np.zeros(1, dtype=np.float32)
|
|
policy = TFPolicy(
|
|
0,
|
|
behavior_spec,
|
|
TrainerSettings(network_settings=NetworkSettings(normalize=True)),
|
|
"testdir",
|
|
False,
|
|
)
|
|
|
|
trajectory_buffer = trajectory.to_agentbuffer()
|
|
policy.update_normalization(trajectory_buffer["vector_obs"])
|
|
|
|
# Check that the running mean and variance is correct
|
|
steps, mean, variance = policy.sess.run(
|
|
[policy.normalization_steps, policy.running_mean, policy.running_variance]
|
|
)
|
|
|
|
assert steps == 6
|
|
assert mean[0] == 0.5
|
|
# Note: variance is initalized to the variance of the initial trajectory + EPSILON
|
|
# (to avoid divide by 0) and multiplied by the number of steps. The correct answer is 0.25
|
|
assert variance[0] / steps == pytest.approx(0.25, abs=0.01)
|
|
# Make another update, this time with all 1's
|
|
time_horizon = 10
|
|
trajectory = make_fake_trajectory(
|
|
length=time_horizon,
|
|
max_step_complete=True,
|
|
observation_shapes=[(1,)],
|
|
action_spec=behavior_spec.action_spec,
|
|
)
|
|
trajectory_buffer = trajectory.to_agentbuffer()
|
|
policy.update_normalization(trajectory_buffer["vector_obs"])
|
|
|
|
# Check that the running mean and variance is correct
|
|
steps, mean, variance = policy.sess.run(
|
|
[policy.normalization_steps, policy.running_mean, policy.running_variance]
|
|
)
|
|
|
|
assert steps == 16
|
|
assert mean[0] == 0.8125
|
|
assert variance[0] / steps == pytest.approx(0.152, abs=0.01)
|
|
|
|
|
|
def test_min_visual_size():
|
|
# Make sure each EncoderType has an entry in MIS_RESOLUTION_FOR_ENCODER
|
|
assert set(ModelUtils.MIN_RESOLUTION_FOR_ENCODER.keys()) == set(EncoderType)
|
|
|
|
for encoder_type in EncoderType:
|
|
with tf.Graph().as_default():
|
|
good_size = ModelUtils.MIN_RESOLUTION_FOR_ENCODER[encoder_type]
|
|
good_res = Tensor3DShape(width=good_size, height=good_size, num_channels=3)
|
|
vis_input = ModelUtils.create_visual_input(good_res, "test_min_visual_size")
|
|
ModelUtils._check_resolution_for_encoder(vis_input, encoder_type)
|
|
enc_func = ModelUtils.get_encoder_for_type(encoder_type)
|
|
enc_func(vis_input, 32, ModelUtils.swish, 1, "test", False)
|
|
|
|
# Anything under the min size should raise an exception. If not, decrease the min size!
|
|
with pytest.raises(Exception):
|
|
with tf.Graph().as_default():
|
|
bad_size = ModelUtils.MIN_RESOLUTION_FOR_ENCODER[encoder_type] - 1
|
|
bad_res = Tensor3DShape(width=bad_size, height=bad_size, num_channels=3)
|
|
vis_input = ModelUtils.create_visual_input(
|
|
bad_res, "test_min_visual_size"
|
|
)
|
|
|
|
with pytest.raises(UnityTrainerException):
|
|
# Make sure we'd hit a friendly error during model setup time.
|
|
ModelUtils._check_resolution_for_encoder(vis_input, encoder_type)
|
|
|
|
enc_func = ModelUtils.get_encoder_for_type(encoder_type)
|
|
enc_func(vis_input, 32, ModelUtils.swish, 1, "test", False)
|
|
|
|
|
|
def test_step_overflow():
|
|
behavior_spec = mb.setup_test_behavior_specs(
|
|
use_discrete=True, use_visual=False, vector_action_space=[2], vector_obs_space=1
|
|
)
|
|
|
|
policy = TFPolicy(
|
|
0,
|
|
behavior_spec,
|
|
TrainerSettings(network_settings=NetworkSettings(normalize=True)),
|
|
create_tf_graph=False,
|
|
)
|
|
policy.create_input_placeholders()
|
|
policy.initialize()
|
|
|
|
policy.set_step(2 ** 31 - 1)
|
|
assert policy.get_current_step() == 2 ** 31 - 1
|
|
policy.increment_step(3)
|
|
assert policy.get_current_step() == 2 ** 31 + 2
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main()
|