Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

284 行
10 KiB

# # Unity ML-Agents Toolkit
import logging
from typing import Dict, List, Deque, Any
import os
import tensorflow as tf
import numpy as np
from collections import deque, defaultdict
from mlagents.envs.action_info import ActionInfoOutputs
from mlagents.envs.exception import UnityException
from mlagents.envs.timers import set_gauge
from mlagents.trainers.trainer_metrics import TrainerMetrics
from mlagents.trainers.tf_policy import TFPolicy
from mlagents.envs.brain import BrainParameters, AllBrainInfo
LOGGER = logging.getLogger("mlagents.trainers")
class UnityTrainerException(UnityException):
"""
Related to errors with the Trainer.
"""
pass
class Trainer(object):
"""This class is the base class for the mlagents.envs.trainers"""
def __init__(
self,
brain: BrainParameters,
trainer_parameters: dict,
training: bool,
run_id: str,
reward_buff_cap: int = 1,
):
"""
Responsible for collecting experiences and training a neural network model.
:BrainParameters brain: Brain to be trained.
:dict trainer_parameters: The parameters for the trainer (dictionary).
:bool training: Whether the trainer is set for training.
:str run_id: The identifier of the current run
:int reward_buff_cap:
"""
self.param_keys: List[str] = []
self.brain_name = brain.brain_name
self.run_id = run_id
self.trainer_parameters = trainer_parameters
self.summary_path = trainer_parameters["summary_path"]
if not os.path.exists(self.summary_path):
os.makedirs(self.summary_path)
self.cumulative_returns_since_policy_update: List[float] = []
self.is_training = training
self.stats: Dict[str, List] = defaultdict(list)
self.trainer_metrics = TrainerMetrics(
path=self.summary_path + ".csv", brain_name=self.brain_name
)
self.summary_writer = tf.summary.FileWriter(self.summary_path)
self._reward_buffer: Deque[float] = deque(maxlen=reward_buff_cap)
self.policy: TFPolicy = None
self.step: int = 0
def check_param_keys(self):
for k in self.param_keys:
if k not in self.trainer_parameters:
raise UnityTrainerException(
"The hyper-parameter {0} could not be found for the {1} trainer of "
"brain {2}.".format(k, self.__class__, self.brain_name)
)
def dict_to_str(self, param_dict: Dict[str, Any], num_tabs: int) -> str:
"""
Takes a parameter dictionary and converts it to a human-readable string.
Recurses if there are multiple levels of dict. Used to print out hyperaparameters.
param: param_dict: A Dictionary of key, value parameters.
return: A string version of this dictionary.
"""
if not isinstance(param_dict, dict):
return str(param_dict)
else:
append_newline = "\n" if num_tabs > 0 else ""
return append_newline + "\n".join(
[
"\t"
+ " " * num_tabs
+ "{0}:\t{1}".format(
x, self.dict_to_str(param_dict[x], num_tabs + 1)
)
for x in param_dict
]
)
def __str__(self) -> str:
return """Hyperparameters for the {0} of brain {1}: \n{2}""".format(
self.__class__.__name__,
self.brain_name,
self.dict_to_str(self.trainer_parameters, 0),
)
@property
def parameters(self) -> Dict[str, Any]:
"""
Returns the trainer parameters of the trainer.
"""
return self.trainer_parameters
@property
def get_max_steps(self) -> float:
"""
Returns the maximum number of steps. Is used to know when the trainer should be stopped.
:return: The maximum number of steps of the trainer
"""
return float(self.trainer_parameters["max_steps"])
@property
def get_step(self) -> int:
"""
Returns the number of steps the trainer has performed
:return: the step count of the trainer
"""
return self.step
@property
def reward_buffer(self) -> Deque[float]:
"""
Returns the reward buffer. The reward buffer contains the cumulative
rewards of the most recent episodes completed by agents using this
trainer.
:return: the reward buffer.
"""
return self._reward_buffer
def increment_step(self, n_steps: int) -> None:
"""
Increment the step count of the trainer
:param n_steps: number of steps to increment the step count by
"""
self.step = self.policy.increment_step(n_steps)
def save_model(self) -> None:
"""
Saves the model
"""
self.policy.save_model(self.get_step)
def export_model(self) -> None:
"""
Exports the model
"""
self.policy.export_model()
def write_training_metrics(self) -> None:
"""
Write training metrics to a CSV file
:return:
"""
self.trainer_metrics.write_training_metrics()
def write_summary(
self, global_step: int, delta_train_start: float, lesson_num: int = 0
) -> None:
"""
Saves training statistics to Tensorboard.
:param delta_train_start: Time elapsed since training started.
:param lesson_num: Current lesson number in curriculum.
:param global_step: The number of steps the simulation has been going for
"""
if (
global_step % self.trainer_parameters["summary_freq"] == 0
and global_step != 0
):
is_training = (
"Training."
if self.is_training and self.get_step <= self.get_max_steps
else "Not Training."
)
step = min(self.get_step, self.get_max_steps)
if len(self.stats["Environment/Cumulative Reward"]) > 0:
mean_reward = np.mean(self.stats["Environment/Cumulative Reward"])
LOGGER.info(
" {}: {}: Step: {}. "
"Time Elapsed: {:0.3f} s "
"Mean "
"Reward: {:0.3f}"
". Std of Reward: {:0.3f}. {}".format(
self.run_id,
self.brain_name,
step,
delta_train_start,
mean_reward,
np.std(self.stats["Environment/Cumulative Reward"]),
is_training,
)
)
set_gauge(f"{self.brain_name}.mean_reward", mean_reward)
else:
LOGGER.info(
" {}: {}: Step: {}. No episode was completed since last summary. {}".format(
self.run_id, self.brain_name, step, is_training
)
)
summary = tf.Summary()
for key in self.stats:
if len(self.stats[key]) > 0:
stat_mean = float(np.mean(self.stats[key]))
summary.value.add(tag="{}".format(key), simple_value=stat_mean)
self.stats[key] = []
summary.value.add(tag="Environment/Lesson", simple_value=lesson_num)
self.summary_writer.add_summary(summary, step)
self.summary_writer.flush()
def write_tensorboard_text(self, key: str, input_dict: Dict[str, Any]) -> None:
"""
Saves text to Tensorboard.
Note: Only works on tensorflow r1.2 or above.
:param key: The name of the text.
:param input_dict: A dictionary that will be displayed in a table on Tensorboard.
"""
try:
with tf.Session() as sess:
s_op = tf.summary.text(
key,
tf.convert_to_tensor(
([[str(x), str(input_dict[x])] for x in input_dict])
),
)
s = sess.run(s_op)
self.summary_writer.add_summary(s, self.get_step)
except Exception:
LOGGER.info(
"Cannot write text summary for Tensorboard. Tensorflow version must be r1.2 or above."
)
pass
def add_experiences(
self,
curr_all_info: AllBrainInfo,
next_all_info: AllBrainInfo,
take_action_outputs: ActionInfoOutputs,
) -> None:
"""
Adds experiences to each agent's experience history.
:param curr_all_info: Dictionary of all current brains and corresponding BrainInfo.
:param next_all_info: Dictionary of all current brains and corresponding BrainInfo.
:param take_action_outputs: The outputs of the Policy's get_action method.
"""
raise UnityTrainerException(
"The process_experiences method was not implemented."
)
def process_experiences(
self, current_info: AllBrainInfo, next_info: AllBrainInfo
) -> None:
"""
Checks agent histories for processing condition, and processes them as necessary.
Processing involves calculating value and advantage targets for model updating step.
:param current_info: Dictionary of all current-step brains and corresponding BrainInfo.
:param next_info: Dictionary of all next-step brains and corresponding BrainInfo.
"""
raise UnityTrainerException(
"The process_experiences method was not implemented."
)
def end_episode(self):
"""
A signal that the Episode has ended. The buffer must be reset.
Get only called when the academy resets.
"""
raise UnityTrainerException("The end_episode method was not implemented.")
def is_ready_update(self):
"""
Returns whether or not the trainer has enough elements to run update model
:return: A boolean corresponding to wether or not update_model() can be run
"""
raise UnityTrainerException("The is_ready_update method was not implemented.")
def update_policy(self):
"""
Uses demonstration_buffer to update model.
"""
raise UnityTrainerException("The update_model method was not implemented.")