您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
347 行
13 KiB
347 行
13 KiB
from unittest import mock
|
|
import pytest
|
|
|
|
import numpy as np
|
|
from mlagents.tf_utils import tf
|
|
import attr
|
|
from mlagents.trainers.behavior_id_utils import BehaviorIdentifiers
|
|
|
|
from mlagents.trainers.trainer.rl_trainer import RLTrainer
|
|
from mlagents.trainers.ppo.trainer import PPOTrainer, discount_rewards
|
|
from mlagents.trainers.ppo.optimizer_tf import PPOOptimizer
|
|
from mlagents.trainers.policy.tf_policy import TFPolicy
|
|
from mlagents.trainers.agent_processor import AgentManagerQueue
|
|
from mlagents.trainers.tests import mock_brain as mb
|
|
from mlagents.trainers.tests.test_trajectory import make_fake_trajectory
|
|
from mlagents.trainers.settings import NetworkSettings, FrameworkType
|
|
from mlagents.trainers.tests.dummy_config import ( # noqa: F401; pylint: disable=unused-variable
|
|
curiosity_dummy_config,
|
|
gail_dummy_config,
|
|
ppo_dummy_config,
|
|
)
|
|
|
|
from mlagents_envs.base_env import ActionSpec
|
|
|
|
|
|
@pytest.fixture
|
|
def dummy_config():
|
|
return attr.evolve(ppo_dummy_config(), framework=FrameworkType.TENSORFLOW)
|
|
|
|
|
|
VECTOR_ACTION_SPACE = 2
|
|
VECTOR_OBS_SPACE = 8
|
|
DISCRETE_ACTION_SPACE = [3, 3, 3, 2]
|
|
BUFFER_INIT_SAMPLES = 64
|
|
NUM_AGENTS = 12
|
|
|
|
CONTINUOUS_ACTION_SPEC = ActionSpec.create_continuous(VECTOR_ACTION_SPACE)
|
|
DISCRETE_ACTION_SPEC = ActionSpec.create_discrete(tuple(DISCRETE_ACTION_SPACE))
|
|
|
|
|
|
def _create_ppo_optimizer_ops_mock(dummy_config, use_rnn, use_discrete, use_visual):
|
|
mock_specs = mb.setup_test_behavior_specs(
|
|
use_discrete,
|
|
use_visual,
|
|
vector_action_space=DISCRETE_ACTION_SPACE
|
|
if use_discrete
|
|
else VECTOR_ACTION_SPACE,
|
|
vector_obs_space=VECTOR_OBS_SPACE,
|
|
)
|
|
|
|
trainer_settings = attr.evolve(dummy_config, framework=FrameworkType.TENSORFLOW)
|
|
trainer_settings.network_settings.memory = (
|
|
NetworkSettings.MemorySettings(sequence_length=16, memory_size=10)
|
|
if use_rnn
|
|
else None
|
|
)
|
|
policy = TFPolicy(
|
|
0, mock_specs, trainer_settings, "test", False, create_tf_graph=False
|
|
)
|
|
optimizer = PPOOptimizer(policy, trainer_settings)
|
|
policy.initialize()
|
|
return optimizer
|
|
|
|
|
|
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
|
|
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
|
|
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
|
|
def test_ppo_optimizer_update(dummy_config, rnn, visual, discrete):
|
|
# Test evaluate
|
|
tf.reset_default_graph()
|
|
optimizer = _create_ppo_optimizer_ops_mock(
|
|
dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual
|
|
)
|
|
# Test update
|
|
update_buffer = mb.simulate_rollout(
|
|
BUFFER_INIT_SAMPLES, optimizer.policy.behavior_spec
|
|
)
|
|
# Mock out reward signal eval
|
|
update_buffer["advantages"] = update_buffer["environment_rewards"]
|
|
update_buffer["extrinsic_returns"] = update_buffer["environment_rewards"]
|
|
update_buffer["extrinsic_value_estimates"] = update_buffer["environment_rewards"]
|
|
optimizer.update(
|
|
update_buffer,
|
|
num_sequences=update_buffer.num_experiences // optimizer.policy.sequence_length,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
|
|
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
|
|
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
|
|
# We need to test this separately from test_reward_signals.py to ensure no interactions
|
|
def test_ppo_optimizer_update_curiosity(
|
|
dummy_config, curiosity_dummy_config, rnn, visual, discrete # noqa: F811
|
|
):
|
|
# Test evaluate
|
|
tf.reset_default_graph()
|
|
dummy_config.reward_signals = curiosity_dummy_config
|
|
optimizer = _create_ppo_optimizer_ops_mock(
|
|
dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual
|
|
)
|
|
# Test update
|
|
update_buffer = mb.simulate_rollout(
|
|
BUFFER_INIT_SAMPLES, optimizer.policy.behavior_spec
|
|
)
|
|
# Mock out reward signal eval
|
|
update_buffer["advantages"] = update_buffer["environment_rewards"]
|
|
update_buffer["extrinsic_returns"] = update_buffer["environment_rewards"]
|
|
update_buffer["extrinsic_value_estimates"] = update_buffer["environment_rewards"]
|
|
update_buffer["curiosity_returns"] = update_buffer["environment_rewards"]
|
|
update_buffer["curiosity_value_estimates"] = update_buffer["environment_rewards"]
|
|
optimizer.update(
|
|
update_buffer,
|
|
num_sequences=update_buffer.num_experiences // optimizer.policy.sequence_length,
|
|
)
|
|
|
|
|
|
# We need to test this separately from test_reward_signals.py to ensure no interactions
|
|
def test_ppo_optimizer_update_gail(gail_dummy_config, dummy_config): # noqa: F811
|
|
# Test evaluate
|
|
tf.reset_default_graph()
|
|
dummy_config.reward_signals = gail_dummy_config
|
|
optimizer = _create_ppo_optimizer_ops_mock(
|
|
attr.evolve(ppo_dummy_config(), framework=FrameworkType.TENSORFLOW),
|
|
use_rnn=False,
|
|
use_discrete=False,
|
|
use_visual=False,
|
|
)
|
|
# Test update
|
|
update_buffer = mb.simulate_rollout(
|
|
BUFFER_INIT_SAMPLES, optimizer.policy.behavior_spec
|
|
)
|
|
# Mock out reward signal eval
|
|
update_buffer["advantages"] = update_buffer["environment_rewards"]
|
|
update_buffer["extrinsic_returns"] = update_buffer["environment_rewards"]
|
|
update_buffer["extrinsic_value_estimates"] = update_buffer["environment_rewards"]
|
|
update_buffer["gail_returns"] = update_buffer["environment_rewards"]
|
|
update_buffer["gail_value_estimates"] = update_buffer["environment_rewards"]
|
|
optimizer.update(
|
|
update_buffer,
|
|
num_sequences=update_buffer.num_experiences // optimizer.policy.sequence_length,
|
|
)
|
|
|
|
# Check if buffer size is too big
|
|
update_buffer = mb.simulate_rollout(3000, optimizer.policy.behavior_spec)
|
|
# Mock out reward signal eval
|
|
update_buffer["advantages"] = update_buffer["environment_rewards"]
|
|
update_buffer["extrinsic_returns"] = update_buffer["environment_rewards"]
|
|
update_buffer["extrinsic_value_estimates"] = update_buffer["environment_rewards"]
|
|
update_buffer["gail_returns"] = update_buffer["environment_rewards"]
|
|
update_buffer["gail_value_estimates"] = update_buffer["environment_rewards"]
|
|
optimizer.update(
|
|
update_buffer,
|
|
num_sequences=update_buffer.num_experiences // optimizer.policy.sequence_length,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
|
|
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
|
|
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
|
|
def test_ppo_get_value_estimates(dummy_config, rnn, visual, discrete):
|
|
tf.reset_default_graph()
|
|
|
|
optimizer = _create_ppo_optimizer_ops_mock(
|
|
dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual
|
|
)
|
|
time_horizon = 15
|
|
trajectory = make_fake_trajectory(
|
|
length=time_horizon,
|
|
observation_shapes=optimizer.policy.behavior_spec.observation_shapes,
|
|
max_step_complete=True,
|
|
action_spec=DISCRETE_ACTION_SPEC if discrete else CONTINUOUS_ACTION_SPEC,
|
|
)
|
|
run_out, final_value_out = optimizer.get_trajectory_value_estimates(
|
|
trajectory.to_agentbuffer(), trajectory.next_obs, done=False
|
|
)
|
|
for key, val in run_out.items():
|
|
assert type(key) is str
|
|
assert len(val) == 15
|
|
|
|
run_out, final_value_out = optimizer.get_trajectory_value_estimates(
|
|
trajectory.to_agentbuffer(), trajectory.next_obs, done=True
|
|
)
|
|
for key, val in final_value_out.items():
|
|
assert type(key) is str
|
|
assert val == 0.0
|
|
|
|
# Check if we ignore terminal states properly
|
|
optimizer.reward_signals["extrinsic"].use_terminal_states = False
|
|
run_out, final_value_out = optimizer.get_trajectory_value_estimates(
|
|
trajectory.to_agentbuffer(), trajectory.next_obs, done=False
|
|
)
|
|
for key, val in final_value_out.items():
|
|
assert type(key) is str
|
|
assert val != 0.0
|
|
|
|
|
|
def test_rl_functions():
|
|
rewards = np.array([0.0, 0.0, 0.0, 1.0], dtype=np.float32)
|
|
gamma = 0.9
|
|
returns = discount_rewards(rewards, gamma, 0.0)
|
|
np.testing.assert_array_almost_equal(
|
|
returns, np.array([0.729, 0.81, 0.9, 1.0], dtype=np.float32)
|
|
)
|
|
|
|
|
|
@mock.patch.object(RLTrainer, "create_model_saver")
|
|
@mock.patch("mlagents.trainers.ppo.trainer.PPOOptimizer")
|
|
def test_trainer_increment_step(ppo_optimizer, mock_create_model_saver):
|
|
trainer_params = attr.evolve(
|
|
attr.evolve(ppo_dummy_config(), framework=FrameworkType.TENSORFLOW),
|
|
framework=FrameworkType.TENSORFLOW,
|
|
)
|
|
mock_optimizer = mock.Mock()
|
|
mock_optimizer.reward_signals = {}
|
|
ppo_optimizer.return_value = mock_optimizer
|
|
|
|
trainer = PPOTrainer("test_brain", 0, trainer_params, True, False, 0, "0")
|
|
policy_mock = mock.Mock(spec=TFPolicy)
|
|
policy_mock.get_current_step.return_value = 0
|
|
step_count = (
|
|
5 # 10 hacked because this function is no longer called through trainer
|
|
)
|
|
policy_mock.increment_step = mock.Mock(return_value=step_count)
|
|
behavior_id = BehaviorIdentifiers.from_name_behavior_id(trainer.brain_name)
|
|
trainer.add_policy(behavior_id, policy_mock)
|
|
|
|
trainer._increment_step(5, trainer.brain_name)
|
|
policy_mock.increment_step.assert_called_with(5)
|
|
assert trainer.step == step_count
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False])
|
|
def test_trainer_update_policy(
|
|
dummy_config, curiosity_dummy_config, use_discrete # noqa: F811
|
|
):
|
|
mock_behavior_spec = mb.setup_test_behavior_specs(
|
|
use_discrete,
|
|
False,
|
|
vector_action_space=DISCRETE_ACTION_SPACE
|
|
if use_discrete
|
|
else VECTOR_ACTION_SPACE,
|
|
vector_obs_space=VECTOR_OBS_SPACE,
|
|
)
|
|
|
|
trainer_params = dummy_config
|
|
trainer_params.network_settings.memory = NetworkSettings.MemorySettings(
|
|
memory_size=10, sequence_length=16
|
|
)
|
|
|
|
# Test curiosity reward signal
|
|
trainer_params.reward_signals = curiosity_dummy_config
|
|
mock_brain_name = "MockBrain"
|
|
behavior_id = BehaviorIdentifiers.from_name_behavior_id(mock_brain_name)
|
|
trainer = PPOTrainer("test", 0, trainer_params, True, False, 0, "0")
|
|
policy = trainer.create_policy(behavior_id, mock_behavior_spec)
|
|
trainer.add_policy(behavior_id, policy)
|
|
# Test update with sequence length smaller than batch size
|
|
buffer = mb.simulate_rollout(BUFFER_INIT_SAMPLES, mock_behavior_spec)
|
|
# Mock out reward signal eval
|
|
buffer["extrinsic_rewards"] = buffer["environment_rewards"]
|
|
buffer["extrinsic_returns"] = buffer["environment_rewards"]
|
|
buffer["extrinsic_value_estimates"] = buffer["environment_rewards"]
|
|
buffer["curiosity_rewards"] = buffer["environment_rewards"]
|
|
buffer["curiosity_returns"] = buffer["environment_rewards"]
|
|
buffer["curiosity_value_estimates"] = buffer["environment_rewards"]
|
|
buffer["advantages"] = buffer["environment_rewards"]
|
|
|
|
trainer.update_buffer = buffer
|
|
trainer._update_policy()
|
|
|
|
|
|
def test_process_trajectory(dummy_config):
|
|
behavior_spec = mb.setup_test_behavior_specs(
|
|
True,
|
|
False,
|
|
vector_action_space=DISCRETE_ACTION_SPACE,
|
|
vector_obs_space=VECTOR_OBS_SPACE,
|
|
)
|
|
mock_brain_name = "MockBrain"
|
|
behavior_id = BehaviorIdentifiers.from_name_behavior_id(mock_brain_name)
|
|
trainer = PPOTrainer("test_brain", 0, dummy_config, True, False, 0, "0")
|
|
policy = trainer.create_policy(behavior_id, behavior_spec)
|
|
trainer.add_policy(behavior_id, policy)
|
|
trajectory_queue = AgentManagerQueue("testbrain")
|
|
trainer.subscribe_trajectory_queue(trajectory_queue)
|
|
time_horizon = 15
|
|
trajectory = make_fake_trajectory(
|
|
length=time_horizon,
|
|
observation_shapes=behavior_spec.observation_shapes,
|
|
max_step_complete=True,
|
|
action_spec=behavior_spec.action_spec,
|
|
)
|
|
trajectory_queue.put(trajectory)
|
|
trainer.advance()
|
|
|
|
# Check that trainer put trajectory in update buffer
|
|
assert trainer.update_buffer.num_experiences == 15
|
|
|
|
# Check that GAE worked
|
|
assert (
|
|
"advantages" in trainer.update_buffer
|
|
and "discounted_returns" in trainer.update_buffer
|
|
)
|
|
|
|
# Check that the stats are being collected as episode isn't complete
|
|
for reward in trainer.collected_rewards.values():
|
|
for agent in reward.values():
|
|
assert agent > 0
|
|
|
|
# Add a terminal trajectory
|
|
trajectory = make_fake_trajectory(
|
|
length=time_horizon + 1,
|
|
max_step_complete=False,
|
|
observation_shapes=behavior_spec.observation_shapes,
|
|
action_spec=behavior_spec.action_spec,
|
|
)
|
|
trajectory_queue.put(trajectory)
|
|
trainer.advance()
|
|
|
|
# Check that the stats are reset as episode is finished
|
|
for reward in trainer.collected_rewards.values():
|
|
for agent in reward.values():
|
|
assert agent == 0
|
|
assert trainer.stats_reporter.get_stats_summaries("Policy/Extrinsic Reward").num > 0
|
|
|
|
|
|
@mock.patch.object(RLTrainer, "create_model_saver")
|
|
@mock.patch("mlagents.trainers.ppo.trainer.PPOOptimizer")
|
|
def test_add_get_policy(ppo_optimizer, mock_create_model_saver, dummy_config):
|
|
mock_optimizer = mock.Mock()
|
|
mock_optimizer.reward_signals = {}
|
|
ppo_optimizer.return_value = mock_optimizer
|
|
|
|
trainer = PPOTrainer("test_policy", 0, dummy_config, True, False, 0, "0")
|
|
policy = mock.Mock(spec=TFPolicy)
|
|
policy.get_current_step.return_value = 2000
|
|
|
|
behavior_id = BehaviorIdentifiers.from_name_behavior_id(trainer.brain_name)
|
|
trainer.add_policy(behavior_id, policy)
|
|
assert trainer.get_policy("test_policy") == policy
|
|
|
|
# Make sure the summary steps were loaded properly
|
|
assert trainer.get_step == 2000
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main()
|