Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

458 行
14 KiB

import json
import os
from unittest.mock import *
import yaml
import pytest
from mlagents.trainers import ActionInfo
from mlagents.trainers import TrainerMetrics
from mlagents.trainers.trainer_controller import TrainerController
from mlagents.trainers.ppo.trainer import PPOTrainer
from mlagents.trainers.bc.offline_trainer import OfflineBCTrainer
from mlagents.trainers.bc.online_trainer import OnlineBCTrainer
from mlagents.envs.exception import UnityEnvironmentException
@pytest.fixture
def dummy_config():
return yaml.load(
"""
default:
trainer: ppo
batch_size: 32
beta: 5.0e-3
buffer_size: 512
epsilon: 0.2
gamma: 0.99
hidden_units: 128
lambd: 0.95
learning_rate: 3.0e-4
max_steps: 5.0e4
normalize: true
num_epoch: 5
num_layers: 2
time_horizon: 64
sequence_length: 64
summary_freq: 1000
use_recurrent: false
memory_size: 8
use_curiosity: false
curiosity_strength: 0.0
curiosity_enc_size: 1
"""
)
@pytest.fixture
def dummy_online_bc_config():
return yaml.load(
"""
default:
trainer: online_bc
brain_to_imitate: ExpertBrain
batches_per_epoch: 16
batch_size: 32
beta: 5.0e-3
buffer_size: 512
epsilon: 0.2
gamma: 0.99
hidden_units: 128
lambd: 0.95
learning_rate: 3.0e-4
max_steps: 5.0e4
normalize: true
num_epoch: 5
num_layers: 2
time_horizon: 64
sequence_length: 64
summary_freq: 1000
use_recurrent: false
memory_size: 8
use_curiosity: false
curiosity_strength: 0.0
curiosity_enc_size: 1
"""
)
@pytest.fixture
def dummy_offline_bc_config():
return yaml.load(
"""
default:
trainer: offline_bc
demo_path: """
+ os.path.dirname(os.path.abspath(__file__))
+ """/test.demo
batches_per_epoch: 16
batch_size: 32
beta: 5.0e-3
buffer_size: 512
epsilon: 0.2
gamma: 0.99
hidden_units: 128
lambd: 0.95
learning_rate: 3.0e-4
max_steps: 5.0e4
normalize: true
num_epoch: 5
num_layers: 2
time_horizon: 64
sequence_length: 64
summary_freq: 1000
use_recurrent: false
memory_size: 8
use_curiosity: false
curiosity_strength: 0.0
curiosity_enc_size: 1
"""
)
@pytest.fixture
def dummy_offline_bc_config_with_override():
base = dummy_offline_bc_config()
base["testbrain"] = {}
base["testbrain"]["normalize"] = False
return base
@pytest.fixture
def dummy_bad_config():
return yaml.load(
"""
default:
trainer: incorrect_trainer
brain_to_imitate: ExpertBrain
batches_per_epoch: 16
batch_size: 32
beta: 5.0e-3
buffer_size: 512
epsilon: 0.2
gamma: 0.99
hidden_units: 128
lambd: 0.95
learning_rate: 3.0e-4
max_steps: 5.0e4
normalize: true
num_epoch: 5
num_layers: 2
time_horizon: 64
sequence_length: 64
summary_freq: 1000
use_recurrent: false
memory_size: 8
"""
)
@pytest.fixture
def basic_trainer_controller(brain_info):
return TrainerController(
model_path="test_model_path",
summaries_dir="test_summaries_dir",
run_id="test_run_id",
save_freq=100,
meta_curriculum=None,
load=True,
train=True,
keep_checkpoints=False,
lesson=None,
external_brains={"testbrain": brain_info},
training_seed=99,
fast_simulation=True,
)
@patch("numpy.random.seed")
@patch("tensorflow.set_random_seed")
def test_initialization_seed(numpy_random_seed, tensorflow_set_seed):
seed = 27
TrainerController("", "", "1", 1, None, True, False, False, None, {}, seed, True)
numpy_random_seed.assert_called_with(seed)
tensorflow_set_seed.assert_called_with(seed)
def assert_bc_trainer_constructed(
trainer_cls, input_config, tc, expected_brain_info, expected_config
):
def mock_constructor(self, brain, trainer_params, training, load, seed, run_id):
assert brain == expected_brain_info
assert trainer_params == expected_config
assert training == tc.train_model
assert load == tc.load_model
assert seed == tc.seed
assert run_id == tc.run_id
with patch.object(trainer_cls, "__init__", mock_constructor):
tc.initialize_trainers(input_config)
assert "testbrain" in tc.trainers
assert isinstance(tc.trainers["testbrain"], trainer_cls)
def assert_ppo_trainer_constructed(
input_config, tc, expected_brain_info, expected_config, expected_reward_buff_cap=0
):
def mock_constructor(
self, brain, reward_buff_cap, trainer_parameters, training, load, seed, run_id
):
self.trainer_metrics = TrainerMetrics("", "")
assert brain == expected_brain_info
assert trainer_parameters == expected_config
assert reward_buff_cap == expected_reward_buff_cap
assert training == tc.train_model
assert load == tc.load_model
assert seed == tc.seed
assert run_id == tc.run_id
with patch.object(PPOTrainer, "__init__", mock_constructor):
tc.initialize_trainers(input_config)
assert "testbrain" in tc.trainers
assert isinstance(tc.trainers["testbrain"], PPOTrainer)
@patch("mlagents.envs.BrainInfo")
def test_initialize_trainer_parameters_uses_defaults(BrainInfoMock):
brain_info_mock = BrainInfoMock()
tc = basic_trainer_controller(brain_info_mock)
full_config = dummy_offline_bc_config()
expected_config = full_config["default"]
expected_config["summary_path"] = tc.summaries_dir + "/test_run_id_testbrain"
expected_config["model_path"] = tc.model_path + "/testbrain"
expected_config["keep_checkpoints"] = tc.keep_checkpoints
assert_bc_trainer_constructed(
OfflineBCTrainer, full_config, tc, brain_info_mock, expected_config
)
@patch("mlagents.envs.BrainInfo")
def test_initialize_trainer_parameters_override_defaults(BrainInfoMock):
brain_info_mock = BrainInfoMock()
tc = basic_trainer_controller(brain_info_mock)
full_config = dummy_offline_bc_config_with_override()
expected_config = full_config["default"]
expected_config["summary_path"] = tc.summaries_dir + "/test_run_id_testbrain"
expected_config["model_path"] = tc.model_path + "/testbrain"
expected_config["keep_checkpoints"] = tc.keep_checkpoints
# Override value from specific brain config
expected_config["normalize"] = False
assert_bc_trainer_constructed(
OfflineBCTrainer, full_config, tc, brain_info_mock, expected_config
)
@patch("mlagents.envs.BrainInfo")
def test_initialize_online_bc_trainer(BrainInfoMock):
brain_info_mock = BrainInfoMock()
tc = basic_trainer_controller(brain_info_mock)
full_config = dummy_online_bc_config()
expected_config = full_config["default"]
expected_config["summary_path"] = tc.summaries_dir + "/test_run_id_testbrain"
expected_config["model_path"] = tc.model_path + "/testbrain"
expected_config["keep_checkpoints"] = tc.keep_checkpoints
assert_bc_trainer_constructed(
OnlineBCTrainer, full_config, tc, brain_info_mock, expected_config
)
@patch("mlagents.envs.BrainInfo")
def test_initialize_ppo_trainer(BrainInfoMock):
brain_info_mock = BrainInfoMock()
tc = basic_trainer_controller(brain_info_mock)
full_config = dummy_config()
expected_config = full_config["default"]
expected_config["summary_path"] = tc.summaries_dir + "/test_run_id_testbrain"
expected_config["model_path"] = tc.model_path + "/testbrain"
expected_config["keep_checkpoints"] = tc.keep_checkpoints
assert_ppo_trainer_constructed(full_config, tc, brain_info_mock, expected_config)
@patch("mlagents.envs.BrainInfo")
def test_initialize_invalid_trainer_raises_exception(BrainInfoMock):
brain_info_mock = BrainInfoMock()
tc = basic_trainer_controller(brain_info_mock)
bad_config = dummy_bad_config()
try:
tc.initialize_trainers(bad_config)
assert (
1 == 0,
"Initialize trainers with bad config did not raise an exception.",
)
except UnityEnvironmentException:
pass
def trainer_controller_with_start_learning_mocks():
trainer_mock = MagicMock()
trainer_mock.get_step = 0
trainer_mock.get_max_steps = 5
trainer_mock.parameters = {"some": "parameter"}
trainer_mock.write_tensorboard_text = MagicMock()
brain_info_mock = MagicMock()
tc = basic_trainer_controller(brain_info_mock)
tc.initialize_trainers = MagicMock()
tc.trainers = {"testbrain": trainer_mock}
tc.take_step = MagicMock()
def take_step_sideeffect(env, curr_info):
tc.trainers["testbrain"].get_step += 1
if tc.trainers["testbrain"].get_step > 10:
raise KeyboardInterrupt
tc.take_step.side_effect = take_step_sideeffect
tc._export_graph = MagicMock()
tc._save_model = MagicMock()
return tc, trainer_mock
@patch("tensorflow.reset_default_graph")
def test_start_learning_trains_forever_if_no_train_model(tf_reset_graph):
tc, trainer_mock = trainer_controller_with_start_learning_mocks()
tc.train_model = False
trainer_config = dummy_config()
tf_reset_graph.return_value = None
env_mock = MagicMock()
env_mock.close = MagicMock()
env_mock.reset = MagicMock()
tc.start_learning(env_mock, trainer_config)
tf_reset_graph.assert_called_once()
tc.initialize_trainers.assert_called_once_with(trainer_config)
env_mock.reset.assert_called_once()
assert tc.take_step.call_count == 11
tc._export_graph.assert_not_called()
tc._save_model.assert_not_called()
env_mock.close.assert_called_once()
@patch("tensorflow.reset_default_graph")
def test_start_learning_trains_until_max_steps_then_saves(tf_reset_graph):
tc, trainer_mock = trainer_controller_with_start_learning_mocks()
trainer_config = dummy_config()
tf_reset_graph.return_value = None
brain_info_mock = MagicMock()
env_mock = MagicMock()
env_mock.close = MagicMock()
env_mock.reset = MagicMock(return_value=brain_info_mock)
tc.start_learning(env_mock, trainer_config)
tf_reset_graph.assert_called_once()
tc.initialize_trainers.assert_called_once_with(trainer_config)
env_mock.reset.assert_called_once()
assert tc.take_step.call_count == trainer_mock.get_max_steps + 1
env_mock.close.assert_called_once()
tc._save_model.assert_called_once_with(steps=6)
def test_start_learning_updates_meta_curriculum_lesson_number():
tc, trainer_mock = trainer_controller_with_start_learning_mocks()
trainer_config = dummy_config()
brain_info_mock = MagicMock()
env_mock = MagicMock()
env_mock.close = MagicMock()
env_mock.reset = MagicMock(return_value=brain_info_mock)
meta_curriculum_mock = MagicMock()
meta_curriculum_mock.set_all_curriculums_to_lesson_num = MagicMock()
tc.meta_curriculum = meta_curriculum_mock
tc.lesson = 5
tc.start_learning(env_mock, trainer_config)
meta_curriculum_mock.set_all_curriculums_to_lesson_num.assert_called_once_with(
tc.lesson
)
def trainer_controller_with_take_step_mocks():
trainer_mock = MagicMock()
trainer_mock.get_step = 0
trainer_mock.get_max_steps = 5
trainer_mock.parameters = {"some": "parameter"}
trainer_mock.write_tensorboard_text = MagicMock()
brain_info_mock = MagicMock()
tc = basic_trainer_controller(brain_info_mock)
tc.trainers = {"testbrain": trainer_mock}
return tc, trainer_mock
def test_take_step_resets_env_on_global_done():
tc, trainer_mock = trainer_controller_with_take_step_mocks()
brain_info_mock = MagicMock()
trainer_mock.add_experiences = MagicMock()
trainer_mock.process_experiences = MagicMock()
trainer_mock.update_policy = MagicMock()
trainer_mock.write_summary = MagicMock()
trainer_mock.trainer.increment_step_and_update_last_reward = MagicMock()
env_mock = MagicMock()
step_data_mock_out = MagicMock()
env_mock.step = MagicMock(return_value=step_data_mock_out)
env_mock.close = MagicMock()
env_mock.reset = MagicMock(return_value=brain_info_mock)
env_mock.global_done = True
trainer_mock.get_action = MagicMock(
return_value=ActionInfo(None, None, None, None, None)
)
tc.take_step(env_mock, brain_info_mock)
env_mock.reset.assert_called_once()
def test_take_step_adds_experiences_to_trainer_and_trains():
tc, trainer_mock = trainer_controller_with_take_step_mocks()
curr_info_mock = MagicMock()
brain_info_mock = MagicMock()
curr_info_mock.__getitem__ = MagicMock(return_value=brain_info_mock)
trainer_mock.is_ready_update = MagicMock(return_value=True)
env_mock = MagicMock()
env_step_output_mock = MagicMock()
env_mock.step = MagicMock(return_value=env_step_output_mock)
env_mock.close = MagicMock()
env_mock.reset = MagicMock(return_value=curr_info_mock)
env_mock.global_done = False
action_output_mock = ActionInfo(
"action", "memory", "actiontext", "value", {"some": "output"}
)
trainer_mock.get_action = MagicMock(return_value=action_output_mock)
tc.take_step(env_mock, curr_info_mock)
env_mock.reset.assert_not_called()
trainer_mock.get_action.assert_called_once_with(brain_info_mock)
env_mock.step.assert_called_once_with(
vector_action={"testbrain": action_output_mock.action},
memory={"testbrain": action_output_mock.memory},
text_action={"testbrain": action_output_mock.text},
value={"testbrain": action_output_mock.value},
)
trainer_mock.add_experiences.assert_called_once_with(
curr_info_mock, env_step_output_mock, action_output_mock.outputs
)
trainer_mock.process_experiences.assert_called_once_with(
curr_info_mock, env_step_output_mock
)
trainer_mock.update_policy.assert_called_once()
trainer_mock.write_summary.assert_called_once()
trainer_mock.increment_step_and_update_last_reward.assert_called_once()