Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

153 行
5.4 KiB

using System;
using System.Collections.Generic;
using System.Linq;
using NUnit.Framework;
using UnityEngine;
using MLAgents.InferenceBrain;
namespace MLAgents.Tests
{
public class EditModeTestInternalBrainTensorGenerator
{
private class TestAgent : Agent
{
}
private Dictionary<Agent, AgentInfo> GetFakeAgentInfos()
{
var goA = new GameObject("goA");
var agentA = goA.AddComponent<TestAgent>();
var infoA = new AgentInfo()
{
stackedVectorObservation = (new float[] {1f, 2f, 3f}).ToList(),
memories = null,
storedVectorActions = new float[] {1, 2},
actionMasks = null,
};
var goB = new GameObject("goB");
var agentB = goB.AddComponent<TestAgent>();
var infoB = new AgentInfo()
{
stackedVectorObservation = (new float[] {4f, 5f, 6f}).ToList(),
memories = (new float[] {1f, 1f, 1f}).ToList(),
storedVectorActions = new float[] {3, 4},
actionMasks = new bool[] {true, false, false, false, false},
};
return new Dictionary<Agent, AgentInfo>(){{agentA, infoA},{agentB, infoB}};
}
[Test]
public void Contruction()
{
var bp = new BrainParameters();
var tensorGenerator = new TensorGenerator(bp, 0);
Assert.IsNotNull(tensorGenerator);
}
[Test]
public void GenerateBatchSize()
{
var inputTensor = new Tensor();
var batchSize = 4;
var generator = new BatchSizeGenerator();
generator.Generate(inputTensor, batchSize, null);
Assert.IsNotNull(inputTensor.Data as int[]);
Assert.AreEqual((inputTensor.Data as int[])[0], batchSize);
}
[Test]
public void GenerateSequenceLength()
{
var inputTensor = new Tensor();
var batchSize = 4;
var generator = new SequenceLengthGenerator();
generator.Generate(inputTensor, batchSize, null);
Assert.IsNotNull(inputTensor.Data as int[]);
Assert.AreEqual((inputTensor.Data as int[])[0], 1);
}
[Test]
public void GenerateVectorObservation()
{
var inputTensor = new Tensor()
{
Shape = new long[] {2, 3}
};
var batchSize = 4;
var agentInfos = GetFakeAgentInfos();
var generator = new VectorObservationGenerator();
generator.Generate(inputTensor, batchSize, agentInfos);
Assert.IsNotNull(inputTensor.Data as float[,]);
Assert.AreEqual((inputTensor.Data as float[,])[0, 0], 1);
Assert.AreEqual((inputTensor.Data as float[,])[0, 2], 3);
Assert.AreEqual((inputTensor.Data as float[,])[1, 0], 4);
Assert.AreEqual((inputTensor.Data as float[,])[1, 2], 6);
}
[Test]
public void GenerateRecurrentInput()
{
var inputTensor = new Tensor()
{
Shape = new long[] {2, 5}
};
var batchSize = 4;
var agentInfos = GetFakeAgentInfos();
var generator = new RecurrentInputGenerator();
generator.Generate(inputTensor, batchSize, agentInfos);
Assert.IsNotNull(inputTensor.Data as float[,]);
Assert.AreEqual((inputTensor.Data as float[,])[0, 0], 0);
Assert.AreEqual((inputTensor.Data as float[,])[0, 4], 0);
Assert.AreEqual((inputTensor.Data as float[,])[1, 0], 1);
Assert.AreEqual((inputTensor.Data as float[,])[1, 4], 0);
}
[Test]
public void GeneratePreviousActionInput()
{
var inputTensor = new Tensor()
{
Shape = new long[] {2, 2},
ValueType = Tensor.TensorType.Integer
};
var batchSize = 4;
var agentInfos = GetFakeAgentInfos();
var generator = new PreviousActionInputGenerator();
generator.Generate(inputTensor, batchSize, agentInfos);
Assert.IsNotNull(inputTensor.Data as int[,]);
Assert.AreEqual((inputTensor.Data as int[,])[0, 0], 1);
Assert.AreEqual((inputTensor.Data as int[,])[0, 1], 2);
Assert.AreEqual((inputTensor.Data as int[,])[1, 0], 3);
Assert.AreEqual((inputTensor.Data as int[,])[1, 1], 4);
}
[Test]
public void GenerateActionMaskInput()
{
var inputTensor = new Tensor()
{
Shape = new long[] {2, 5},
ValueType = Tensor.TensorType.FloatingPoint
};
var batchSize = 4;
var agentInfos = GetFakeAgentInfos();
var generator = new ActionMaskInputGenerator();
generator.Generate(inputTensor, batchSize, agentInfos);
Assert.IsNotNull(inputTensor.Data as float[,]);
Assert.AreEqual((inputTensor.Data as float[,])[0, 0], 1);
Assert.AreEqual((inputTensor.Data as float[,])[0, 4], 1);
Assert.AreEqual((inputTensor.Data as float[,])[1, 0], 0);
Assert.AreEqual((inputTensor.Data as float[,])[1, 4], 1);
}
}
}