您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
399 行
14 KiB
399 行
14 KiB
import unittest.mock as mock
|
|
import pytest
|
|
import tempfile
|
|
import yaml
|
|
import math
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from mlagents.trainers.sac.models import SACModel
|
|
from mlagents.trainers.sac.policy import SACPolicy
|
|
from mlagents.trainers.sac.trainer import SACTrainer
|
|
from mlagents.trainers.tests.test_simple_rl import Simple1DEnvironment, SimpleEnvManager
|
|
from mlagents.trainers.trainer_util import initialize_trainers
|
|
from mlagents.envs import UnityEnvironment
|
|
from mlagents.envs.mock_communicator import MockCommunicator
|
|
from mlagents.trainers.trainer_controller import TrainerController
|
|
from mlagents.envs.base_unity_environment import BaseUnityEnvironment
|
|
from mlagents.envs import BrainInfo, AllBrainInfo, BrainParameters
|
|
from mlagents.envs.communicator_objects import AgentInfoProto
|
|
from mlagents.envs.sampler_class import SamplerManager
|
|
from mlagents.trainers.tests import mock_brain as mb
|
|
|
|
|
|
@pytest.fixture
|
|
def dummy_config():
|
|
return yaml.load(
|
|
"""
|
|
trainer: sac
|
|
batch_size: 32
|
|
buffer_size: 10240
|
|
buffer_init_steps: 0
|
|
hidden_units: 32
|
|
init_entcoef: 0.1
|
|
learning_rate: 3.0e-4
|
|
max_steps: 1024
|
|
memory_size: 8
|
|
normalize: false
|
|
num_update: 1
|
|
train_interval: 1
|
|
num_layers: 1
|
|
time_horizon: 64
|
|
sequence_length: 16
|
|
summary_freq: 1000
|
|
tau: 0.005
|
|
use_recurrent: false
|
|
curiosity_enc_size: 128
|
|
demo_path: None
|
|
vis_encode_type: default
|
|
reward_signals:
|
|
extrinsic:
|
|
strength: 1.0
|
|
gamma: 0.99
|
|
"""
|
|
)
|
|
|
|
|
|
VECTOR_ACTION_SPACE = [2]
|
|
VECTOR_OBS_SPACE = 8
|
|
DISCRETE_ACTION_SPACE = [3, 3, 3, 2]
|
|
BUFFER_INIT_SAMPLES = 32
|
|
NUM_AGENTS = 12
|
|
|
|
|
|
def create_sac_policy_mock(mock_env, dummy_config, use_rnn, use_discrete, use_visual):
|
|
env, mock_brain, _ = mb.setup_mock_env_and_brains(
|
|
mock_env,
|
|
use_discrete,
|
|
use_visual,
|
|
num_agents=NUM_AGENTS,
|
|
vector_action_space=VECTOR_ACTION_SPACE,
|
|
vector_obs_space=VECTOR_OBS_SPACE,
|
|
discrete_action_space=DISCRETE_ACTION_SPACE,
|
|
)
|
|
|
|
trainer_parameters = dummy_config
|
|
model_path = env.brain_names[0]
|
|
trainer_parameters["model_path"] = model_path
|
|
trainer_parameters["keep_checkpoints"] = 3
|
|
trainer_parameters["use_recurrent"] = use_rnn
|
|
policy = SACPolicy(0, mock_brain, trainer_parameters, False, False)
|
|
return env, policy
|
|
|
|
|
|
@mock.patch("mlagents.envs.UnityEnvironment")
|
|
def test_sac_cc_policy(mock_env, dummy_config):
|
|
# Test evaluate
|
|
tf.reset_default_graph()
|
|
env, policy = create_sac_policy_mock(
|
|
mock_env, dummy_config, use_rnn=False, use_discrete=False, use_visual=False
|
|
)
|
|
brain_infos = env.reset()
|
|
brain_info = brain_infos[env.brain_names[0]]
|
|
run_out = policy.evaluate(brain_info)
|
|
assert run_out["action"].shape == (NUM_AGENTS, VECTOR_ACTION_SPACE[0])
|
|
|
|
# Test update
|
|
buffer = mb.simulate_rollout(env, policy, BUFFER_INIT_SAMPLES)
|
|
# Mock out reward signal eval
|
|
buffer.update_buffer["extrinsic_rewards"] = buffer.update_buffer["rewards"]
|
|
policy.update(
|
|
buffer.update_buffer, num_sequences=len(buffer.update_buffer["actions"])
|
|
)
|
|
env.close()
|
|
|
|
|
|
@mock.patch("mlagents.envs.UnityEnvironment")
|
|
def test_sac_update_reward_signals(mock_env, dummy_config):
|
|
# Test evaluate
|
|
tf.reset_default_graph()
|
|
# Add a Curiosity module
|
|
dummy_config["reward_signals"]["curiosity"] = {}
|
|
dummy_config["reward_signals"]["curiosity"]["strength"] = 1.0
|
|
dummy_config["reward_signals"]["curiosity"]["gamma"] = 0.99
|
|
dummy_config["reward_signals"]["curiosity"]["encoding_size"] = 128
|
|
env, policy = create_sac_policy_mock(
|
|
mock_env, dummy_config, use_rnn=False, use_discrete=False, use_visual=False
|
|
)
|
|
|
|
# Test update
|
|
buffer = mb.simulate_rollout(env, policy, BUFFER_INIT_SAMPLES)
|
|
# Mock out reward signal eval
|
|
buffer.update_buffer["extrinsic_rewards"] = buffer.update_buffer["rewards"]
|
|
buffer.update_buffer["curiosity_rewards"] = buffer.update_buffer["rewards"]
|
|
policy.update_reward_signals(
|
|
{"curiosity": buffer.update_buffer},
|
|
num_sequences=len(buffer.update_buffer["actions"]),
|
|
)
|
|
env.close()
|
|
|
|
|
|
@mock.patch("mlagents.envs.UnityEnvironment")
|
|
def test_sac_dc_policy(mock_env, dummy_config):
|
|
# Test evaluate
|
|
tf.reset_default_graph()
|
|
env, policy = create_sac_policy_mock(
|
|
mock_env, dummy_config, use_rnn=False, use_discrete=True, use_visual=False
|
|
)
|
|
brain_infos = env.reset()
|
|
brain_info = brain_infos[env.brain_names[0]]
|
|
run_out = policy.evaluate(brain_info)
|
|
assert run_out["action"].shape == (NUM_AGENTS, len(DISCRETE_ACTION_SPACE))
|
|
|
|
# Test update
|
|
buffer = mb.simulate_rollout(env, policy, BUFFER_INIT_SAMPLES)
|
|
# Mock out reward signal eval
|
|
buffer.update_buffer["extrinsic_rewards"] = buffer.update_buffer["rewards"]
|
|
policy.update(
|
|
buffer.update_buffer, num_sequences=len(buffer.update_buffer["actions"])
|
|
)
|
|
env.close()
|
|
|
|
|
|
@mock.patch("mlagents.envs.UnityEnvironment")
|
|
def test_sac_visual_policy(mock_env, dummy_config):
|
|
# Test evaluate
|
|
tf.reset_default_graph()
|
|
env, policy = create_sac_policy_mock(
|
|
mock_env, dummy_config, use_rnn=False, use_discrete=True, use_visual=True
|
|
)
|
|
brain_infos = env.reset()
|
|
brain_info = brain_infos[env.brain_names[0]]
|
|
run_out = policy.evaluate(brain_info)
|
|
assert run_out["action"].shape == (NUM_AGENTS, len(DISCRETE_ACTION_SPACE))
|
|
|
|
# Test update
|
|
buffer = mb.simulate_rollout(env, policy, BUFFER_INIT_SAMPLES)
|
|
# Mock out reward signal eval
|
|
buffer.update_buffer["extrinsic_rewards"] = buffer.update_buffer["rewards"]
|
|
run_out = policy.update(
|
|
buffer.update_buffer, num_sequences=len(buffer.update_buffer["actions"])
|
|
)
|
|
assert type(run_out) is dict
|
|
|
|
|
|
@mock.patch("mlagents.envs.UnityEnvironment")
|
|
def test_sac_rnn_policy(mock_env, dummy_config):
|
|
# Test evaluate
|
|
tf.reset_default_graph()
|
|
env, policy = create_sac_policy_mock(
|
|
mock_env, dummy_config, use_rnn=True, use_discrete=True, use_visual=False
|
|
)
|
|
brain_infos = env.reset()
|
|
brain_info = brain_infos[env.brain_names[0]]
|
|
run_out = policy.evaluate(brain_info)
|
|
assert run_out["action"].shape == (NUM_AGENTS, len(DISCRETE_ACTION_SPACE))
|
|
|
|
# Test update
|
|
buffer = mb.simulate_rollout(env, policy, BUFFER_INIT_SAMPLES)
|
|
# Mock out reward signal eval
|
|
buffer.update_buffer["extrinsic_rewards"] = buffer.update_buffer["rewards"]
|
|
policy.update(buffer.update_buffer, num_sequences=2)
|
|
env.close()
|
|
|
|
|
|
@mock.patch("mlagents.envs.UnityEnvironment.executable_launcher")
|
|
@mock.patch("mlagents.envs.UnityEnvironment.get_communicator")
|
|
def test_sac_model_cc_vector(mock_communicator, mock_launcher):
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=False, visual_inputs=0
|
|
)
|
|
env = UnityEnvironment(" ")
|
|
|
|
model = SACModel(env.brains["RealFakeBrain"])
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [model.output, model.value, model.entropy, model.learning_rate]
|
|
feed_dict = {
|
|
model.batch_size: 2,
|
|
model.sequence_length: 1,
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
|
|
}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
env.close()
|
|
|
|
|
|
@mock.patch("mlagents.envs.UnityEnvironment.executable_launcher")
|
|
@mock.patch("mlagents.envs.UnityEnvironment.get_communicator")
|
|
def test_sac_model_cc_visual(mock_communicator, mock_launcher):
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=False, visual_inputs=2
|
|
)
|
|
env = UnityEnvironment(" ")
|
|
|
|
model = SACModel(env.brains["RealFakeBrain"])
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [model.output, model.value, model.entropy, model.learning_rate]
|
|
feed_dict = {
|
|
model.batch_size: 2,
|
|
model.sequence_length: 1,
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
|
|
model.visual_in[0]: np.ones([2, 40, 30, 3]),
|
|
model.visual_in[1]: np.ones([2, 40, 30, 3]),
|
|
}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
env.close()
|
|
|
|
|
|
@mock.patch("mlagents.envs.UnityEnvironment.executable_launcher")
|
|
@mock.patch("mlagents.envs.UnityEnvironment.get_communicator")
|
|
def test_sac_model_dc_visual(mock_communicator, mock_launcher):
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=True, visual_inputs=2
|
|
)
|
|
env = UnityEnvironment(" ")
|
|
model = SACModel(env.brains["RealFakeBrain"])
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [model.output, model.value, model.entropy, model.learning_rate]
|
|
feed_dict = {
|
|
model.batch_size: 2,
|
|
model.sequence_length: 1,
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
|
|
model.visual_in[0]: np.ones([2, 40, 30, 3]),
|
|
model.visual_in[1]: np.ones([2, 40, 30, 3]),
|
|
model.action_masks: np.ones([2, 2]),
|
|
}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
env.close()
|
|
|
|
|
|
@mock.patch("mlagents.envs.UnityEnvironment.executable_launcher")
|
|
@mock.patch("mlagents.envs.UnityEnvironment.get_communicator")
|
|
def test_sac_model_dc_vector(mock_communicator, mock_launcher):
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=True, visual_inputs=0
|
|
)
|
|
env = UnityEnvironment(" ")
|
|
model = SACModel(env.brains["RealFakeBrain"])
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [model.output, model.value, model.entropy, model.learning_rate]
|
|
feed_dict = {
|
|
model.batch_size: 2,
|
|
model.sequence_length: 1,
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
|
|
model.action_masks: np.ones([2, 2]),
|
|
}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
env.close()
|
|
|
|
|
|
@mock.patch("mlagents.envs.UnityEnvironment.executable_launcher")
|
|
@mock.patch("mlagents.envs.UnityEnvironment.get_communicator")
|
|
def test_sac_model_dc_vector_rnn(mock_communicator, mock_launcher):
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=True, visual_inputs=0
|
|
)
|
|
env = UnityEnvironment(" ")
|
|
memory_size = 128
|
|
model = SACModel(
|
|
env.brains["RealFakeBrain"], use_recurrent=True, m_size=memory_size
|
|
)
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [
|
|
model.output,
|
|
model.all_log_probs,
|
|
model.value,
|
|
model.entropy,
|
|
model.learning_rate,
|
|
model.memory_out,
|
|
]
|
|
feed_dict = {
|
|
model.batch_size: 1,
|
|
model.sequence_length: 2,
|
|
model.prev_action: [[0], [0]],
|
|
model.memory_in: np.zeros((1, memory_size)),
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
|
|
model.action_masks: np.ones([1, 2]),
|
|
}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
env.close()
|
|
|
|
|
|
@mock.patch("mlagents.envs.UnityEnvironment.executable_launcher")
|
|
@mock.patch("mlagents.envs.UnityEnvironment.get_communicator")
|
|
def test_sac_model_cc_vector_rnn(mock_communicator, mock_launcher):
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=False, visual_inputs=0
|
|
)
|
|
env = UnityEnvironment(" ")
|
|
memory_size = 128
|
|
model = SACModel(
|
|
env.brains["RealFakeBrain"], use_recurrent=True, m_size=memory_size
|
|
)
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [
|
|
model.output,
|
|
model.all_log_probs,
|
|
model.value,
|
|
model.entropy,
|
|
model.learning_rate,
|
|
model.memory_out,
|
|
]
|
|
feed_dict = {
|
|
model.batch_size: 1,
|
|
model.sequence_length: 2,
|
|
model.memory_in: np.zeros((1, memory_size)),
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
|
|
}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
env.close()
|
|
|
|
|
|
def test_sac_save_load_buffer(tmpdir):
|
|
env, mock_brain, _ = mb.setup_mock_env_and_brains(
|
|
mock.Mock(),
|
|
False,
|
|
False,
|
|
num_agents=NUM_AGENTS,
|
|
vector_action_space=VECTOR_ACTION_SPACE,
|
|
vector_obs_space=VECTOR_OBS_SPACE,
|
|
discrete_action_space=DISCRETE_ACTION_SPACE,
|
|
)
|
|
trainer_params = dummy_config()
|
|
trainer_params["summary_path"] = str(tmpdir)
|
|
trainer_params["model_path"] = str(tmpdir)
|
|
trainer_params["save_replay_buffer"] = True
|
|
trainer = SACTrainer(mock_brain, 1, trainer_params, True, False, 0, 0)
|
|
trainer.training_buffer = mb.simulate_rollout(
|
|
env, trainer.policy, BUFFER_INIT_SAMPLES
|
|
)
|
|
buffer_len = len(trainer.training_buffer.update_buffer["actions"])
|
|
trainer.save_model()
|
|
|
|
# Wipe Trainer and try to load
|
|
trainer2 = SACTrainer(mock_brain, 1, trainer_params, True, True, 0, 0)
|
|
assert len(trainer2.training_buffer.update_buffer["actions"]) == buffer_len
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main()
|