Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

1662 行
55 KiB

from __future__ import print_function
import numpy as np
import struct # convert from Python values and C structs
import tensorflow as tf
import re
# import barracuda
# from barracuda import Struct
from mlagents.trainers import barracuda
from mlagents.trainers.barracuda import Struct
from google.protobuf import descriptor
from google.protobuf.json_format import MessageToJson
if __name__ == "__main__":
# Handle command line argumengts
args = barracuda.parse_args(
description="Convert Tensorflow model to Barracuda binary",
source_extension=".pb",
help="input Tensorflow serialized .pb file",
)
# Te following code can be used as an example of API used from another module
# convert() is the main entry point for converter
import tensorflow_to_barracuda as tf2bc
tf2bc.convert(args.source_file, args.target_file, args.trim_unused_by_output, args)
# TODO: support more than 1 LSTM layer per model - prepend scope to names and inputs
# TODO: support different activation functions in LSTM
# TODO: strip output Identity node, instead patch upstream layer names
# TODO: use ScaleBias and Pow with alpha when input is constant Tensor
# TODO: support all data format types (curretly only NHWC)
# TODO: support all data types (currently only FLOAT, INT32, BOOL)
# TODO: implement FusedResizeAndPadConv2D
# Important ProtoBuf definitions:
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/types.proto
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/tensor.proto
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/node_def.proto
#
# Node descriptions:
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/nn_ops.cc
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/math_ops.cc
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/random_ops.cc
#
# Class doc:
# https://www.tensorflow.org/api_docs/cc/
#
known_classes = {
"Dense": Struct(
id=1,
rank=2,
out_shapes=lambda shapes: [
[shapes[0][0], 1, 1, shapes[0][1]]
if len(shapes[0]) > 1
else [1, 1, 1, 1], # W
[1, 1, 1, shapes[-1][-1]], # B
],
patch_data=lambda data: [data[0], data[1]],
),
"MatMul": Struct(
id=1,
rank=2,
out_shapes=lambda shapes: [
[shapes[0][0], 1, 1, shapes[0][1]], # W
[1, 1, 1, shapes[0][1]], # B
],
patch_data=lambda data: [data[0], np.zeros(np.shape(data[1]))],
),
"BiasAdd": Struct(
id=51, # implemented as ScaleBias
out_shapes=lambda shapes: [
[1, 1, 1, shapes[0][0]], # ONE
[1, 1, 1, shapes[0][0]], # B
],
patch_data=lambda data: [np.ones(np.shape(data[0])), data[0]],
),
# TODO: NCHW
"Conv2D": Struct(
id=20,
rank=4,
out_shapes=lambda shapes: [shapes[0], [1, 1, 1, shapes[-1][-1]]], # K # B
patch_data=lambda data: [data[0], data[1]],
),
"DepthwiseConv2dNative": Struct( # DepthwiseConv2D
id=21,
rank=4,
out_shapes=lambda s: [
[
s[0][0],
s[0][1],
s[0][3],
s[0][2],
], # K TF:[H, W, in_channels, channel_multiplier] => [H, W, 1, in_channels]
[1, 1, 1, s[-1][-1]] if len(s) > 1 else [1, 1, 1, s[0][2]], # B
],
patch_data=lambda data: [np.transpose(data[0], (0, 1, 3, 2)), data[1]],
),
"Conv2DBackpropInput": Struct( # Conv2DTranspose
id=22,
rank=4,
out_shapes=lambda s: [
[
s[0][0],
s[0][1],
s[0][3],
s[0][2],
], # K TF:[H, W, in_channels, out_channels] => [H, W, out_channels, in_channels]
[1, 1, 1, s[-1][-1]] if len(s) > 1 else [1, 1, 1, s[0][2]], # B
],
patch_data=lambda data: [np.transpose(data[0], (0, 1, 3, 2)), data[1]],
),
"Pad": 29,
# TODO: 3D
"ResizeNearestNeighbor": 23, # implemented as Upsample2D
"ResizeBilinear": 23, # implemented as Upsample2D
"ResizeBicubic": 23, # implemented as Upsample2D
"MaxPool": 25,
"AvgPool": 26,
"GlobalAveragePool": 28,
"GlobalAvgPool": 28,
"Activation": 50,
"BatchNormalization": Struct(
id=51, # after fusion implemented as ScaleBias
out_shapes=lambda shapes: [
[1, 1, 1, shapes[0][0]], # S
[1, 1, 1, shapes[0][0]], # B
],
patch_data=lambda data:
# fuse [gamma, beta, mean, var, epsilon] => [scale, bias]
# TODO: double-check if epsilon is the last data argument and not the 1st?
barracuda.fuse_batchnorm_weights(data[0], data[1], data[2], data[3], data[4])
if len(data) == 5
else
# fuse [ONE, beta, mean, var, epsilon] => [scale, bias]
# TODO: double-check if epsilon is the last data argument and not the 1st?
barracuda.fuse_batchnorm_weights(
np.ones(np.shape(data[0])), data[0], data[1], data[2], data[3]
),
),
"FusedBatchNorm": Struct(
id=51, # after fusion implemented as ScaleBias
out_shapes=lambda shapes: [
[1, 1, 1, shapes[0][0]], # S
[1, 1, 1, shapes[0][0]], # B
],
patch_data=lambda data, layer:
# fuse [gamma, beta, mean, var, epsilon] => [scale, bias]
barracuda.fuse_batchnorm_weights(
data[0], data[1], data[2], data[3], get_epsilon(layer)
),
),
"BatchNormalizationRuntime": Struct(
id=52,
out_shapes=lambda shapes: [
[1, 1, 1, shapes[0][0]], # G
[1, 1, 1, shapes[0][0]], # B
],
patch_data=lambda data: [data[0], data[1]]
if len(data) == 4
else [np.ones(np.shape(data[0])), data[0]],
),
"InstanceNormalization": Struct( # TODO: epsilon
id=52,
out_shapes=lambda shapes: [
[1, 1, 1, shapes[0][0]], # G
[1, 1, 1, shapes[0][0]], # B
],
patch_data=lambda data: [data[0], data[1]]
if len(data) == 2
else [np.ones(np.shape(data[0])), data[0]],
),
"LRN": 53,
"RandomStandardNormal": 64,
"RandomUniform": 65,
"Multinomial": Struct(id=66, rank=2),
"OneHot": Struct(id=67, rank=lambda inputs: inputs[0] + 1),
# Broadcast ops
"Add": Struct(id=100, rank=lambda inputs: np.max(inputs)),
"Sub": Struct(id=101, rank=lambda inputs: np.max(inputs)),
"Mul": Struct(id=102, rank=lambda inputs: np.max(inputs)),
"RealDiv": Struct(id=103, rank=lambda inputs: np.max(inputs)),
"Pow": Struct(id=104, rank=lambda inputs: np.max(inputs)),
"Minimum": Struct(id=110, rank=lambda inputs: np.max(inputs)),
"Maximum": Struct(id=111, rank=lambda inputs: np.max(inputs)),
# Reduce ops
"Max": Struct(id=124, rank=lambda inputs: inputs[0] - 1),
"Mean": Struct(id=125, rank=lambda inputs: inputs[0] - 1),
"Min": Struct(id=126, rank=lambda inputs: inputs[0] - 1),
"Prod": Struct(id=127, rank=lambda inputs: inputs[0] - 1),
"Sum": Struct(id=128, rank=lambda inputs: inputs[0] - 1),
"Flatten": Struct(id=200, rank=2),
"Reshape": 201,
"Concat": 210,
"StridedSlice": 211,
"Nop": 0,
}
requires_runtime_flag = {
"Dropout": "DropoutRuntime",
"BatchNormalization": "BatchNormalizationRuntime",
}
known_activations = {
"Linear": 0,
"Relu": 1,
"Softmax": 2,
"Tanh": 3,
"Sigmoid": 4,
"Elu": 5,
"Relu6": 6,
"LeakyRelu": 7,
"Selu": 8,
"Swish": 9,
"LogSoftmax": 10,
"Softplus": 11,
"Softsign": 12,
"Abs": 100,
"Neg": 101,
"Ceil": 102,
"Floor": 104,
"Sqrt": 111,
"Exp": 113,
"Log": 114,
"Acos": 200,
"Acosh": 201,
"Asin": 202,
"Asinh": 203,
"Atan": 204,
"Atanh": 205,
"Cos": 206,
"Cosh": 207,
"Sin": 208,
"Sinh": 209,
"Tan": 210,
}
known_paddings = {"VALID": [0, 0, 0, 0], "SAME": [-1]} # SameUpper
supported_data_formats = {"NHWC"}
known_patterns = {
# TODO: Flatten pattern using namespace regexp
repr(["Shape", "StridedSlice", "Pack", "Reshape"]): "Flatten",
repr(["Shape", "StridedSlice", "Prod", "Pack", "Reshape"]): "Flatten",
repr(
["Shape", "Slice", "Slice", "Prod", "ExpandDims", "ConcatV2", "Reshape"]
): "Flatten",
repr(["Add", "Rsqrt", "Mul", "Mul", "Sub", "Add"]): "BatchNormalization",
repr(["Add", "Rsqrt", "Mul", "Mul", "Mul", "Sub", "Add"]): "BatchNormalization",
repr(
[
"Mean",
"StopGradient",
"SquaredDifference",
"Mean",
"Sub",
"Add",
"Pow",
"RealDiv",
"Mul",
"Add",
]
): "InstanceNormalization_ByTensorOrder",
repr(
[
"Mean",
"StopGradient",
"SquaredDifference",
"Mean",
"Squeeze",
"Squeeze",
"Add",
"Rsqrt",
"Mul",
"Mul",
"Mul",
"Sub",
"Add",
]
): "InstanceNormalization_ByTensorName",
repr(["MatMul", "BiasAdd"]): "Dense",
repr(["Conv2D", "BiasAdd"]): "Conv2D",
repr(["DepthwiseConv2dNative", "BiasAdd"]): "DepthwiseConv2dNative",
repr(["Conv2DBackpropInput", "BiasAdd"]): "Conv2DBackpropInput",
repr(["Conv2DBackpropInput"]): "Conv2DBackpropInput",
repr(
[
"Shape",
"StridedSlice",
"StridedSlice",
"StridedSlice",
"Mul",
"Mul",
"Pack",
"Conv2DBackpropInput",
"BiasAdd",
]
): "Conv2DBackpropInput",
repr(
[
"Shape",
"StridedSlice",
"StridedSlice",
"StridedSlice",
"Mul",
"Mul",
"Pack",
"Conv2DBackpropInput",
]
): "Conv2DBackpropInput",
repr(
["Shape", "StridedSlice", "Mul", "ResizeNearestNeighbor"]
): "ResizeNearestNeighbor",
repr(
["Pack", "Reshape"]
): "Flatten$", # for now we assume that this combination is trivial Flatten
# for exmaple it is used in ML-agents LSTM nets with sequence_length==1
repr(
[
"StridedSlice",
"Reshape",
re.compile("^lstm/"),
"Reshape",
"ConcatV2",
"Identity",
]
): "BasicLSTMReshapeOut",
repr(
[re.compile("^lstm/"), "Reshape", "ConcatV2", "Identity"]
): "BasicLSTMReshapeOut",
repr(
["Reshape", re.compile("^lstm_[a-z]*/"), "Reshape", "ConcatV2"]
): "BasicLSTMReshapeOut",
repr(["Reshape", re.compile("^lstm_[a-z]*/"), "ConcatV2"]): "BasicLSTMConcatOut",
repr(["Sigmoid", "Mul"]): "Swish",
repr(["Mul", "Abs", "Mul", "Add"]): "LeakyRelu",
repr(
["Shape", "Reshape"]
): "ReshapeLikeInput0", # shape comes from the 1st node as input[0]
repr(["Reshape"]): "Reshape",
repr(["ConcatV2"]): "ConcatV2",
repr(["Mean"]): "Mean",
repr(["Pad"]): "Pad",
repr(["Multinomial"]): "Multinomial",
repr(["OneHot"]): "OneHot",
repr(["Square"]): "Square",
repr(["SquaredDifference"]): "SquaredDifference",
repr(["StridedSlice"]): "StridedSlice",
repr(["Squeeze"]): "Squeeze",
repr(["ExpandDims"]): "ExpandDims",
# TODO: FusedResizeAndPadConv2D
}
def by_name(args, name):
for a in args:
if a.name.endswith(name):
return a
def by_op(args, op):
for a in args:
if a.op == op:
return a
def order_by(args, names):
ordered = []
arg_count = len(args)
for name in names:
ordered += [a for a in args if a.endswith(name)]
args = [a for a in args if not a.endswith(name)]
ordered += args # append what is left
assert len(ordered) == arg_count
return ordered
transform_patterns = {
"Flatten": lambda nodes, inputs, tensors, _: Struct(op="Flatten", input=inputs),
"Flatten$": lambda nodes, inputs, tensors, _: Struct(
op="Flatten",
input=[
inputs[-1]
], # take only the last input, assume all other arguments are trivial (like sequence_length==1
# always in ML-agents LSTM nets)
),
"Reshape": lambda nodes, inputs, tensors, context: Struct(
op="Reshape",
rank=len(tensors[0].data)
if len(tensors)
> 0 # tensor data is treated as reshape coefficient, if not empty
else context.layer_ranks[inputs[1]]
if len(inputs) == 2 # otherwise shape of the 2nd input tensor is used
else -1,
input=inputs,
shape=[
tensors[0].data[0],
tensors[0].data[1],
tensors[0].data[2],
tensors[0].data[3],
]
if len(tensors) > 0 and len(tensors[0].data) == 4
else [tensors[0].data[0], 1, tensors[0].data[1], tensors[0].data[2]]
if len(tensors) > 0 and len(tensors[0].data) == 3
else [tensors[0].data[0], 1, 1, tensors[0].data[1]]
if len(tensors) > 0 and len(tensors[0].data) == 2
else [1, 1, 1, tensors[0].data[0]]
if len(tensors) > 0 and len(tensors[0].data) == 1
else [],
),
"ReshapeLikeInput0": lambda nodes, inputs, tensors, context: Struct(
op="Reshape",
rank=context.layer_ranks[inputs[0]]
if len(inputs)
== 2 # unlike standard 'Reshape' input[0] is used as shape & input[1] as data
else -1,
input=[inputs[1], inputs[0]]
if len(inputs)
== 2 # unlike standard 'Reshape' input[0] is used as shape & input[1] as data
else inputs,
),
"Pad": lambda nodes, inputs, tensors, _: Struct(
op="Pad"
if (
len(tensors) > 0
and np.shape(tensors[0]) == [4, 2]
and get_attr(nodes[-1], "mode", default="constant").lower() == "constant"
)
else "BarracudaUnsupportedPad",
input=inputs,
pads=[
tensors[0].data[1, 0],
tensors[0].data[1, 1],
tensors[0].data[2, 0],
tensors[0].data[2, 1],
]
if len(tensors) > 0 and np.shape(tensors[0]) == [4, 2]
else [0, 0, 0, 0],
beta=get_attr(nodes[-1], "constant_values") or 0,
),
"Squeeze": lambda nodes, inputs, tensors, context: Struct(
op="Nop", # Squeeze is no-operation in Barracuda
input=inputs,
rank=context.layer_ranks[inputs[0]] - len(get_attr(nodes[-1], "squeeze_dims"))
if len(get_attr(nodes[-1], "squeeze_dims")) > 0
else -1, # if list of squeeze axis is not specified, it is unknown what would be the rank of result
),
"ExpandDims": lambda nodes, inputs, tensors, context: Struct(
op="Nop", # ExpandDims is no-operation in Barracuda
input=[inputs[0]],
rank=context.layer_ranks[inputs[0]] + 1,
),
"Multinomial": lambda nodes, inputs, tensors, _: Struct(
op="Multinomial",
input=inputs,
shape=[int(by_name(tensors, "/num_samples").data[0])],
# seed = get_attr(nodes[0], 'seed'),
),
"OneHot": lambda nodes, inputs, tensors, _: Struct(
op="OneHot",
input=inputs,
shape=[int(by_name(tensors, "/depth").data[0])],
alpha=by_name(tensors, "/on_value").data[0],
beta=by_name(tensors, "/off_value").data[0],
),
"Square": lambda nodes, inputs, tensors, _: Struct(
op="Mul", input=[inputs[0], inputs[0]] # input * input
),
"ConcatV2": lambda nodes, inputs, tensors, context: Struct(
op="Concat",
input=inputs,
axis=axis_to_barracuda(
int(by_name(tensors, "/axis").data[0]), context.layer_ranks[inputs[0]]
),
),
"StridedSlice": lambda nodes, inputs, tensors, context: strided_slice(
nodes[-1].name,
inputs[0],
context.layer_ranks[inputs[0]],
begin=tensors[0].data,
end=tensors[1].data,
strides=tensors[2].data,
begin_mask=get_attr(nodes[-1], "begin_mask"),
end_mask=get_attr(nodes[-1], "end_mask"),
ellipsis_mask=get_attr(nodes[-1], "ellipsis_mask"),
new_axis_mask=get_attr(nodes[-1], "new_axis_mask"),
shrink_axis_mask=get_attr(nodes[-1], "shrink_axis_mask"),
),
"BatchNormalization": lambda nodes, inputs, tensors, _: Struct(
op="BatchNormalization",
input=[i for i in inputs]
+ order_by([t.name for t in tensors], ["gamma", "beta", "mean", "variance"]),
),
"InstanceNormalization_ByTensorName": lambda nodes, inputs, tensors, _: Struct(
op="InstanceNormalization",
input=[i for i in inputs]
+ order_by([t.name for t in tensors], ["scale", "offset"]),
),
"InstanceNormalization_ByTensorOrder": lambda nodes, inputs, tensors, _: Struct(
op="InstanceNormalization",
input=[i for i in inputs] + [t.name for t in tensors][-2:],
),
"Dense": lambda nodes, inputs, tensors, _: Struct(
op="Dense",
input=[i for i in inputs] + [t.name for t in tensors],
data_frmt=get_attr(
by_op(nodes, "Dense") or by_op(nodes, "MatMul"), "data_format"
),
),
"Conv2D": lambda nodes, inputs, tensors, _: Struct(
op="Conv2D",
input=[i for i in inputs] + [t.name for t in tensors],
padding=get_attr(by_op(nodes, "Conv2D"), "padding"),
strides=get_attr(by_op(nodes, "Conv2D"), "strides"),
dilations=get_attr(by_op(nodes, "Conv2D"), "dilations"),
data_frmt=get_attr(by_op(nodes, "Conv2D"), "data_format"),
),
"DepthwiseConv2dNative": lambda nodes, inputs, tensors, _: Struct(
op="DepthwiseConv2dNative",
input=[i for i in inputs] + [t.name for t in tensors],
padding=get_attr(by_op(nodes, "DepthwiseConv2dNative"), "padding"),
strides=get_attr(by_op(nodes, "DepthwiseConv2dNative"), "strides"),
dilations=get_attr(by_op(nodes, "DepthwiseConv2dNative"), "dilations"),
data_frmt=get_attr(by_op(nodes, "DepthwiseConv2dNative"), "data_format"),
),
"Conv2DBackpropInput": lambda nodes, inputs, tensors, _: Struct(
op="Conv2DBackpropInput",
input=[i for i in inputs]
+ [t.name for t in tensors][1:][
-2:
], # [1:] - skips the 0th tensor, since Conv2DBackpropInput 0th tensor is 'input_sizes'
# (which differs from other Conv layers)
# [-2:] - take only last 2 tensors, this allows to process large patterns with the same code
padding=get_attr(by_op(nodes, "Conv2DBackpropInput"), "padding"),
strides=get_attr(by_op(nodes, "Conv2DBackpropInput"), "strides"),
dilations=get_attr(by_op(nodes, "Conv2DBackpropInput"), "dilations"),
data_frmt=get_attr(by_op(nodes, "Conv2DBackpropInput"), "data_format"),
),
"ResizeNearestNeighbor": lambda nodes, inputs, tensors, _: Struct(
op="ResizeNearestNeighbor",
input=[i for i in inputs],
ksize=[int(tensors[0].data[0]), int(tensors[0].data[1])]
if len(tensors) == 1 and len(tensors[0].data) == 2
else [int(tensors[-1].data[0]), int(tensors[-1].data[1])]
if len(tensors) >= 4 and len(tensors[-1].data) == 2
else [1, 1],
),
"Mean": lambda nodes, inputs, tensors, _:
# take only the last input
barracuda.mean(nodes[-1].name, inputs[-1], axis=tensors[0].data),
"SquaredDifference": lambda nodes, inputs, tensors, _: sqr_diff(
nodes[-1].name, inputs[0], inputs[1]
),
"BasicLSTMReshapeOut": lambda nodes, inputs, tensors, context: basic_lstm(
nodes, inputs, tensors, context, find_type="Reshape"
),
"BasicLSTMConcatOut": lambda nodes, inputs, tensors, context: basic_lstm(
nodes, inputs, tensors, context, find_type="ConcatV2"
),
"Swish": lambda nodes, inputs, tensors, _: Struct(op="Swish", input=inputs),
"LeakyRelu": lambda nodes, inputs, tensors, _: Struct(op="LeakyRelu", input=inputs),
# TODO:'Round'
# TODO:'Rsqrt'
}
# Debug
def debug(s):
print(s)
return s
# Helper
def embody(v, default=0):
return default if v is None else v
# Parse
def get_attr(node, attr_name, default=None):
if type(node) == Struct:
if hasattr(node, attr_name):
return getattr(node, attr_name)
else:
return default
# See: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/attr_value.proto
val = node.attr[attr_name]
if val.HasField("list"):
return val.list.i
# NOTE: can't find way to identify type of list BUT it is almost always list(int)
# except list(float) in FractionalAvg/MaxPool
if val.HasField("b"):
return val.b
if val.HasField("i"):
return val.i
if val.HasField("f"):
return val.f
if val.HasField("s"):
return val.s.decode("utf-8")
if val.HasField("shape"):
return val.shape
if val.HasField("tensor"):
return val.tensor
return default
def get_epsilon(layer):
return get_attr(
layer, "epsilon", default=0.001
) # default epsilon taken from tf.layers.batch_normalization
def get_layer_rank(layer):
shape = get_attr(layer, "shape")
if not shape:
return None
if isinstance(shape, list):
return 1
shape = [dim.size for dim in shape.dim]
return len(shape)
def get_layer_shape(layer):
shape = get_attr(layer, "shape")
if not shape:
return [-1, -1, -1, -1]
shape = [dim.size for dim in shape.dim]
if len(shape) == 1:
return [1, 1, 1, shape[0]]
if len(shape) == 2:
return [shape[0], 1, 1, shape[1]]
if len(shape) == 3:
return [shape[0], 1, shape[1], shape[2]]
return shape
def get_tensor_dims(tensor):
if isinstance(tensor, np.ndarray):
return np.shape(tensor)
dims = []
if tensor.tensor_shape:
dims = [v.size for v in tensor.tensor_shape.dim]
if tensor.float_val:
dims = np.shape(tensor.float_val)
if tensor.int_val:
dims = np.shape(tensor.int_val)
if tensor.bool_val:
dims = np.shape(tensor.bool_val)
return dims
def get_tensor_dtype(tensor):
if isinstance(tensor, np.ndarray):
return tensor.dtype
dataType = ""
fields = tensor.ListFields()
for field, value in fields:
if (
field.name == "dtype"
and field.cpp_type == descriptor.FieldDescriptor.CPPTYPE_ENUM
):
dataType = field.enum_type.values_by_number.get(value, None).name
return dataType
def get_tensor_data(tensor):
if isinstance(tensor, np.ndarray):
return tensor.astype(float)
dims = get_tensor_dims(tensor)
elems = np.product(dims)
if tensor.tensor_content:
# TODO: support other types
dataType = get_tensor_dtype(tensor)
if dataType == "DT_FLOAT":
data = struct.unpack("<" + str(elems) + "f", tensor.tensor_content)
elif dataType == "DT_INT32":
data = struct.unpack("<" + str(elems) + "i", tensor.tensor_content)
elif dataType == "DT_BOOL":
data = struct.unpack("<" + str(elems) + "?", tensor.tensor_content)
else:
print("UNSUPPORTED: data type", dataType)
if tensor.float_val:
data = tensor.float_val
if tensor.int_val:
data = np.array(tensor.int_val, dtype=float)
if tensor.bool_val:
data = np.array(tensor.bool_val, dtype=float)
return np.array(data).reshape(dims)
def flatten(items, enter=lambda x: isinstance(x, list)):
# http://stackoverflow.com/a/40857703
# https://github.com/ctmakro/canton/blob/master/canton/misc.py
"""Yield items from any nested iterable; see REF."""
for x in items:
if enter(x):
yield from flatten(x)
else:
yield x
def replace_strings_in_list(array_of_strigs, replace_with_strings):
"A value in replace_with_strings can be either single string or list of strings"
potentially_nested_list = [
replace_with_strings.get(s) or s for s in array_of_strigs
]
return list(flatten(potentially_nested_list))
def remove_duplicates_from_list(array):
"Preserves the order of elements in the list"
output = []
unique = set()
for a in array:
if a not in unique:
unique.add(a)
output.append(a)
return output
#########################################################
def pool_to_HW(shape, data_frmt):
""" Convert from NHWC|NCHW => HW
"""
if len(shape) != 4:
return shape # Not NHWC|NCHW, return as is
if data_frmt == "NCHW":
return [shape[2], shape[3]]
return [shape[1], shape[2]]
def strides_to_HW(shape, format):
return pool_to_HW(shape, format)
def axis_to_barracuda(axis, input_rank):
N = 0
H = 1
W = 2
C = 3
if axis < 0:
axis = input_rank - axis
assert axis >= 0
assert axis < input_rank
if input_rank == 4:
# [NHWC]
return [N, H, W, C][axis]
if input_rank == 3:
# [N_WC]
return [N, W, C][axis]
elif input_rank == 2:
# [N__C]
return [N, C][axis]
elif input_rank == 1:
# [___C]
return [C][axis]
return -1
#########################################################
def sqr_diff(name, a, b):
nn = barracuda.Build(name)
d = nn.sub(a, b)
nn.mul(d, d, out=name)
return nn.layers
def strided_slice(
name,
input,
input_rank,
begin,
end,
strides,
begin_mask,
end_mask,
ellipsis_mask,
new_axis_mask,
shrink_axis_mask,
):
assert input_rank != -1
begin = begin.astype(np.int32).tolist()
end = end.astype(np.int32).tolist()
strides = strides.astype(np.int32).tolist()
# StridedSlice range and mask descriptions:
# https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/strided-slice
# TODO: I don't think elipsis and newaxis would work together well with current implementation
assert len(begin) == len(end)
assert len(begin) == len(strides)
# prepare begin, end, stride arrays
output_rank = input_rank
insert_pos = 0
while ellipsis_mask:
ellipsis_mask >>= 1
insert_pos += 1
# NOTE: begin=0, end=0, stride=1 <= full range from existing axis
# begin=0, end=0, stride=0 <= new axis OR shrink axis to single 1st element
# begin=N, end=N, stride=0 <= shrink axis to single Nth element
while len(begin) < input_rank:
if insert_pos:
begin.insert(insert_pos, 0)
end.insert(insert_pos, 0)
strides.insert(insert_pos, 1)
else:
begin.append(0)
end.append(0)
strides.append(1)
assert len(begin) <= input_rank
descriptor_count = input_rank
for i in range(len(begin)):
if begin_mask & (1 << i):
begin[i] = 0
if end_mask & (1 << i):
end[i] = 0
if new_axis_mask & (1 << i):
begin[i] = end[i] = strides[i] = 0
output_rank += 1
if shrink_axis_mask & (1 << i):
end[i] = begin[i]
strides[i] = 0
output_rank -= 1
# convert to Barracuda layout
descriptor_count = len(begin)
assert descriptor_count <= 4
if descriptor_count == 3:
begin = [begin[0], 0, begin[1], begin[2]]
end = [end[0], 0, end[1], end[2]]
strides = [strides[0], 1, strides[1], strides[2]]
elif descriptor_count == 2:
begin = [begin[0], 0, 0, begin[1]]
end = [end[0], 0, 0, end[1]]
strides = [strides[0], 1, 1, strides[1]]
elif descriptor_count == 1:
begin = [0, 0, 0, begin[0]]
end = [0, 0, 0, end[0]]
strides = [1, 1, 1, strides[0]]
nn = barracuda.Build(name)
nn.strided_slice(input, begin, end, strides, output_rank, out=name)
return nn.layers
# search backwards starting from index_of_actual_output_node for non-const node
def locate_actual_output_node(
nodes, index_of_actual_output_node=-1, find_type="Reshape"
):
while (-index_of_actual_output_node - 1) < len(nodes) and nodes[
index_of_actual_output_node
].op != find_type:
index_of_actual_output_node -= 1
actual_output_node = nodes[index_of_actual_output_node]
assert -index_of_actual_output_node < len(nodes)
return actual_output_node
def gru(
nodes,
inputs,
tensors,
context,
index_of_actual_output_node,
assert_output_node_op_type=None,
):
assert len(inputs) == 2
def find_tensor_by_name(name, default=None):
nonlocal tensors
candidates = [t for t in tensors if t.name.endswith(name)]
return candidates[0].data if candidates else default
input = inputs[-1]
state = inputs[0]
gates_kernel = find_tensor_by_name("/gates/kernel")
gates_bias = find_tensor_by_name(
"/gates/bias", default=np.zeros(np.shape(gates_kernel)[-1])
)
candidate_kernel = find_tensor_by_name("/candidate/kernel")
candidate_bias = find_tensor_by_name(
"/candidate/bias", default=np.zeros(np.shape(candidate_kernel)[-1])
)
new_state = nodes[-1].name + "_h"
assert np.shape(gates_kernel)[-1] == np.shape(gates_bias)[-1]
assert np.shape(candidate_kernel)[-1] == np.shape(candidate_bias)[-1]
num_gates = 2
seq_length = 1
hidden_size = np.shape(gates_kernel)[-1] // num_gates
gate_kernels = np.split(gates_kernel, num_gates, axis=-1)
gate_biases = np.split(gates_bias, num_gates, axis=-1)
context.model_tensors["kernel_r"] = gate_kernels[0]
context.model_tensors["kernel_u"] = gate_kernels[1]
context.model_tensors["kernel_c"] = candidate_kernel
context.model_tensors["bias_r"] = gate_biases[0]
context.model_tensors["bias_u"] = gate_biases[1]
context.model_tensors["bias_c"] = candidate_bias
context.layer_ranks[state] = 2
new_layers = barracuda.gru(
"gru",
input,
state,
"kernel_r",
"kernel_u",
"kernel_c",
"bias_r",
"bias_u",
"bias_c",
new_state,
)
state_shape = [1, 1, seq_length, hidden_size]
context.model_memories += [state_shape, state, new_state]
# map exptected output of the replaced pattern to output from our GRU cell
actual_output_node = locate_actual_output_node(
nodes, index_of_actual_output_node, assert_output_node_op_type
)
context.map_ignored_layer_to_its_input[actual_output_node.name] = new_state
return new_layers
def basic_lstm(nodes, inputs, tensors, context, find_type="Reshape"):
assert len(inputs) == 2
def find_tensor_by_name(name, default=None):
nonlocal tensors
candidates = [t for t in tensors if t.name.endswith(name)]
return candidates[0].data if candidates else default
def find_forget_bias():
nonlocal nodes
nonlocal tensors
# TODO: make it more fault-tolerant
# search for scalar float constant that is input to Add node
# and hope it is not a constant for some complex activation function
for t in tensors:
if np.prod(t.shape) == 1 and get_tensor_dtype(t.obj) == "DT_FLOAT":
for n in nodes:
if n.op == "Add" and t.name in n.input:
return t.data
return np.zeros(1)
input = inputs[-1]
state_c = inputs[0] + "_c"
state_h = inputs[0] + "_h"
kernel = find_tensor_by_name("/kernel")
bias = find_tensor_by_name("/bias", default=np.zeros(np.shape(kernel)[-1]))
forget_bias = find_forget_bias()
new_state_c = nodes[-1].name + "_c"
new_state_h = nodes[-1].name + "_h"
assert np.shape(kernel)[-1] == np.shape(bias)[-1]
num_gates = 4
seq_length = 1
hidden_size = np.shape(kernel)[-1] // num_gates
kernels = np.split(kernel, num_gates, axis=-1)
biases = np.split(bias, num_gates, axis=-1)
context.model_tensors["kernel_i"] = kernels[0]
context.model_tensors["kernel_j"] = kernels[1]
context.model_tensors["kernel_f"] = kernels[2]
context.model_tensors["kernel_o"] = kernels[3]
context.model_tensors["bias_i"] = biases[0]
context.model_tensors["bias_j"] = biases[1]
context.model_tensors["bias_f"] = biases[2] + forget_bias
context.model_tensors["bias_o"] = biases[3]
context.layer_ranks[state_c] = 2
context.layer_ranks[state_h] = 2
# lstm_value/strided_slice/stack => lstm_value
lstm_name = next(i.name for i in nodes if i.name.startswith("lstm")).split("/")[0]
new_layers = barracuda.lstm(
lstm_name,
input,
state_c,
state_h,
"kernel_i",
"kernel_j",
"kernel_f",
"kernel_o",
"bias_i",
"bias_j",
"bias_f",
"bias_o",
new_state_c,
new_state_h,
)
state_shape = [1, 1, seq_length, hidden_size]
context.model_memories += [state_shape, state_c, new_state_c]
context.model_memories += [state_shape, state_h, new_state_h]
# map expected output of the replaced pattern to output from our LSTM cell
actual_output_node = locate_actual_output_node(nodes, -1, find_type)
concat_out_node = locate_actual_output_node(nodes, -1, "ConcatV2")
context.map_ignored_layer_to_its_input[actual_output_node.name] = new_state_h
context.map_ignored_layer_to_its_input[concat_out_node.name] = new_state_c
return new_layers
#########################################################
def process_layer(layer, context, args):
model_tensors = context.model_tensors
input_shapes = context.input_shapes
layer_ranks = context.layer_ranks
map_ignored_layer_to_its_input = context.map_ignored_layer_to_its_input
name = layer.name
class_name = layer.op
inputs = (
layer.input
) # Tensorflow inputs are always explicit, but in case of Keras we had 'inputs = layer.input or [prev_layer_name]'
inputs = replace_strings_in_list(inputs, map_ignored_layer_to_its_input)
if class_name == "Nop":
assert len(inputs) <= 1
map_ignored_layer_to_its_input[name] = inputs
return
if class_name == "Const":
model_tensors[name] = layer.attr["value"].tensor
layer_ranks[name] = (
get_layer_rank(layer) or 1
) # we treast constants without shape as rank=1 (scalar converted to tensor)
return
if class_name == "Placeholder":
assert inputs == []
map_ignored_layer_to_its_input[name] = inputs
input_shapes[name] = get_layer_shape(layer)
layer_ranks[name] = get_layer_rank(layer)
return
if class_name == "Identity":
connected_to_const = len(inputs) == 1 and inputs[0] in model_tensors
if connected_to_const:
map_ignored_layer_to_its_input[name] = inputs
return
else:
# treat Identity layer that are connected to processing nodes
# as output from the network
class_name = "Linear"
if args.print_layers or args.verbose:
var_tensors = [i for i in inputs if i not in model_tensors]
const_tensors = [i for i in inputs if i in model_tensors]
print(
"'%s' %s Vars:%s Const:%s" % (name, class_name, var_tensors, const_tensors)
)
if class_name in known_activations:
activation = class_name
class_name = "Activation"
else:
activation = "Linear"
if class_name not in known_classes:
if class_name in requires_runtime_flag:
print("SKIP:", class_name, "layer is used only for training")
else:
print("IGNORED:", class_name, "unknown layer")
map_ignored_layer_to_its_input[name] = inputs
return
klass = known_classes[class_name]
if type(klass) == int:
klass = Struct(id=klass)
o_l = Struct()
o_l.type = klass.id
o_l.class_name = class_name
o_l.name = name
auto_pad = get_attr(layer, "padding") # layer.attr['padding'].s.decode("utf-8")
pads = get_attr(layer, "pads")
strides = get_attr(layer, "strides") # layer.attr['strides'].list.i
pool_size = get_attr(layer, "ksize") # layer.attr['ksize'].list.i
shape = get_attr(layer, "shape")
starts = get_attr(layer, "starts")
ends = get_attr(layer, "ends")
slice_strides = get_attr(layer, "slice_strides")
rank = get_attr(layer, "rank") or get_layer_rank(layer)
data_frmt = get_attr(
layer, "data_format"
) # layer.attr['data_format'].s.decode("utf-8")
axis = get_attr(layer, "axis")
alpha = get_attr(layer, "alpha", default=1)
beta = get_attr(layer, "beta")
if activation and activation not in known_activations:
print("IGNORED: unknown activation", activation)
if auto_pad and auto_pad not in known_paddings:
print("IGNORED: unknown padding", auto_pad)
if data_frmt and data_frmt not in supported_data_formats:
print("UNSUPPORTED: data format", data_frmt)
o_l.activation = known_activations.get(activation) or 0
o_l.pads = (
known_paddings.get(auto_pad) if auto_pad else pads or starts or [0, 0, 0, 0]
)
o_l.strides = strides_to_HW(strides, data_frmt) if strides else slice_strides or []
o_l.pool_size = (
pool_to_HW(pool_size, data_frmt) if pool_size else ends or shape or []
)
o_l.axis = embody(axis, default=-1)
o_l.alpha = embody(alpha, default=1)
o_l.beta = beta or 0
o_l.rank = (
-1
) # default initialization, actual value will be set later on in this function
tensor_names = [i for i in inputs if i in model_tensors]
o_l.tensors = [
Struct(
name=x,
shape=get_tensor_dims(model_tensors[x]),
data=get_tensor_data(model_tensors[x]),
)
for x in tensor_names
]
# Patch shapes & data
layer_has_model_tensors = len(o_l.tensors) > 0
if hasattr(klass, "out_shapes") and layer_has_model_tensors:
shapes = klass.out_shapes([x.shape for x in o_l.tensors])
# if we have more shapes than actual tensors,
# then create & fill missing tensors with zeros
in_tensor_num = len(o_l.tensors)
for index, new_shape in enumerate(shapes):
if index >= in_tensor_num:
new_tensor = Struct(
name=("%s/patch:%i") % (name, index - in_tensor_num),
shape=new_shape,
data=np.zeros(new_shape),
)
o_l.tensors.append(new_tensor)
assert len(shapes) <= len(o_l.tensors)
if hasattr(klass, "patch_data"):
data = [x.data for x in o_l.tensors]
patch_data_fn = klass.patch_data
patch_data_expected_arg_count = patch_data_fn.__code__.co_argcount
patch_data_args = (
(data, layer) if patch_data_expected_arg_count > 1 else (data,)
)
tensor_data = patch_data_fn(*patch_data_args)
o_l.tensors = o_l.tensors[
: len(tensor_data)
] # resize tensor array to match patched data - patching might reduce number of tensors
for x, data in zip(o_l.tensors, tensor_data):
x.data = data
# after this point we should have equal amount of shapes and tensors
assert len(o_l.tensors) == len(shapes)
for x, shape in zip(o_l.tensors, shapes):
assert x.data.size == np.prod(shape)
x.shape = shape
o_l.inputs = [i for i in inputs if i not in model_tensors]
else:
# no 'patch_data' lambda was specifiowned, op does not require tensor args
o_l.tensors = []
o_l.inputs = inputs
# Force all tensors to float32
for x in o_l.tensors:
x.data = x.data.astype(np.float32)
input_ranks = [layer_ranks.get(i, -1) for i in o_l.inputs]
for i in o_l.inputs:
if i not in layer_ranks and "lstm" not in i:
print("WARNING: rank unknown for tensor", i, "while processing node", name)
if hasattr(klass, "rank"):
rank = klass.rank
if hasattr(rank, "__call__"):
assert (
-1 not in input_ranks
) # for rank() lambda all input ranks have to be known (not -1)
rank = rank(input_ranks)
if rank is None:
def all_elements_equal(arr): # http://stackoverflow.com/q/3844948/
return arr.count(arr[0]) == len(arr)
assert len(input_ranks) > 0
assert all_elements_equal(input_ranks)
rank = input_ranks[0]
layer_ranks[name] = rank
o_l.rank = rank
# Layer is ready
context.layers.append(o_l)
class ModelBuilderContext:
def __init__(self):
self.layers = []
self.input_shapes = {}
self.model_tensors = {}
self.model_memories = []
self.layer_ranks = {}
self.map_ignored_layer_to_its_input = {}
def process_model(model, args):
o_context = ModelBuilderContext()
# Find node patterns
nodes_as_array = [node for node in model.node]
nodes_as_array = slow_but_stable_topological_sort(nodes_as_array, verbose=True)
node_index = 0
while node_index < len(nodes_as_array):
node = nodes_as_array[node_index]
match = False
for pattern_repr, pattern_name in known_patterns.items():
pattern = eval(pattern_repr)
if node_index + len(pattern) > len(nodes_as_array):
continue # pattern too long, skip
require_exact_match = pattern[0] == "Const" or pattern[0] == "Identity"
pattern_end = node_index
def match_node(node, pattern):
return node.op == pattern or (
hasattr(pattern, "match") and pattern.match(node.name)
)
for p in pattern:
if not require_exact_match:
while (
pattern_end < len(nodes_as_array)
and nodes_as_array[pattern_end].op != p
and (
nodes_as_array[pattern_end].op == "Const"
or nodes_as_array[pattern_end].op == "Identity"
)
):
pattern_end += 1
if pattern_end >= len(nodes_as_array):
break
match = False
if hasattr(p, "match"): # regexp
while pattern_end < len(nodes_as_array) and p.match(
nodes_as_array[pattern_end].name
):
match = True
pattern_end += 1
else: # exact string
match = nodes_as_array[pattern_end].op == p
pattern_end += 1
if not match:
break
def get_tensors(pattern_nodes):
nonlocal o_context
map_ignored_layer_to_its_input = (
o_context.map_ignored_layer_to_its_input
)
model_tensors = o_context.model_tensors
# tensors <= all Const nodes within this pattern
const_nodes = [n for n in pattern_nodes if n.op == "Const"]
# TODO: unify / reuse code from process_layer
identity_nodes = [n for n in pattern_nodes if n.op == "Identity"]
for i in identity_nodes:
inputs = replace_strings_in_list(
i.input, map_ignored_layer_to_its_input
)
map_ignored_layer_to_its_input[i.name] = inputs
# gather inputs from Op nodes (not Const, not Identity)
op_nodes = [
n
for n in pattern_nodes
if n not in const_nodes and n not in identity_nodes
]
inputs_to_op_nodes = list(
flatten([list(flatten(n.input)) for n in op_nodes])
)
inputs_to_op_nodes = replace_strings_in_list(
inputs_to_op_nodes, map_ignored_layer_to_its_input
)
inputs_to_op_nodes = [i.split(":")[0] for i in inputs_to_op_nodes]
const_nodes_by_name = {n.name: n for n in const_nodes}
tensors = []
for i in inputs_to_op_nodes:
if i in model_tensors:
src = model_tensors[i]
tensors += [
Struct(
name=i,
obj=src,
shape=get_tensor_dims(src),
data=get_tensor_data(src),
)
]
elif i in const_nodes_by_name:
src = const_nodes_by_name[i].attr["value"].tensor
tensors += [
Struct(
name=i,
obj=src,
shape=get_tensor_dims(src),
data=get_tensor_data(src),
)
]
tensor_names = [n.name for n in tensors]
# filter only inputs that are coming from nodes that are outside this pattern
# preserve the order
pattern_nodes = [n.name for n in pattern_nodes] + tensor_names
# inputs_from_outside_pattern = remove_duplicates_from_list([i for i in inputs_to_op_nodes if
# nodes_by_name[i] not in pattern_nodes])
inputs_from_outside_pattern = remove_duplicates_from_list(
[i for i in inputs_to_op_nodes if i not in pattern_nodes]
)
return inputs_from_outside_pattern, tensors
if match:
nodes = nodes_as_array[node_index:pattern_end]
name = nodes[-1].name
var_tensors, const_tensors = get_tensors(nodes)
if args.print_patterns or args.verbose:
print(
"PATTERN:",
name,
"~~",
pattern_name,
"<-",
var_tensors,
"+",
[t.name for t in const_tensors],
)
print(" ", pattern)
for n in nodes:
if n.op == "Const" or n.op == "Identity":
process_layer(n, o_context, args)
new_layers = transform_patterns[pattern_name](
nodes, var_tensors, const_tensors, o_context
)
if not isinstance(new_layers, list):
if not hasattr(new_layers, name):
new_layers.name = name
new_layers = [new_layers]
for l in new_layers:
# TODO: prefix new layer names with scope, patch inputs
# l.name = name + '/' + l.name
process_layer(l, o_context, args)
node_index = pattern_end
break # pattern found & processed
if not match:
# TODO: gather tensors in the same way as patterns do
process_layer(node, o_context, args)
node_index += 1
def find_unconnected_const_nodes(nodes):
nodes_with_consts = {node.name: node for node in nodes if node.op == "Const"}
for node in nodes:
for i in node.input:
nodes_with_consts.pop(i, None)
return list(nodes_with_consts.keys())
return (
o_context.layers,
o_context.input_shapes,
o_context.model_tensors,
o_context.model_memories,
find_unconnected_const_nodes(nodes_as_array),
)
# Sort nodes so that all input dependencies are satisfied beforehand
# while preserving original order of the nodes in the model whenever possible.
# NOITE: preservation of original order is important for pattern matching
def slow_but_stable_topological_sort(nodes, verbose):
nodes_with_consts = [node for node in nodes if node.op == "Const"]
nodes_for_sorting = [node for node in nodes if node.op != "Const"]
# TODO: optimize for performance
# based on http://blog.gapotchenko.com/stable-topological-sort
def assign_ids(nodes):
ids = []
id_by_name = {}
id = 0
for node in nodes:
id_by_name[node.name] = id
ids.append(id)
id += 1
inputs_by_id = [None] * len(nodes)
for node in nodes:
id = id_by_name[node.name]
inputs_by_id[id] = {id_by_name.get(i, -1) for i in node.input}
return ids, inputs_by_id
def sort(ids, inputs_by_id, verbose_lambda):
sorted = False
n = len(ids)
while not sorted:
sorted = True
for i in range(n):
for j in range(i):
if ids[i] in inputs_by_id[ids[j]]:
tmp = ids.pop(i)
ids.insert(j, tmp)
sorted = False
verbose_lambda(sorted)
return ids
prefix_printed = False
def print_status(sorted):
nonlocal prefix_printed
if not sorted:
if not prefix_printed:
print("Sorting model, may take a while...", end="", flush=True)
prefix_printed = True
else:
print(".", end="", flush=True)
else:
if prefix_printed:
print(" Done!")
ids, inputs_by_id = assign_ids(nodes_for_sorting)
ids = sort(
ids, inputs_by_id, lambda sorted: print_status(sorted) if verbose else None
)
assert len(ids) == len(nodes_for_sorting)
assert len(ids) + len(nodes_with_consts) == len(nodes)
return nodes_with_consts + [nodes_for_sorting[id] for id in ids]
def very_slow_but_stable_topological_sort(nodes, verbose):
# TODO: optimize for performance
# based on http://blog.gapotchenko.com/stable-topological-sort
n = len(nodes)
sorted = False
while not sorted:
sorted = True
for i in range(n):
for j in range(i):
if nodes[i].name in nodes[j].input:
tmp = nodes.pop(i)
nodes.insert(j, tmp)
sorted = False
assert len(nodes) == n
return nodes
#########################################################
def convert(
source_file,
target_file,
trim_unused_by_output="",
verbose=False,
compress_f16=False,
):
"""
Converts a TensorFlow model into a Barracuda model.
:param source_file: The TensorFlow Model
:param target_file: The name of the file the converted model will be saved to
:param trim_unused_by_output: The regexp to match output nodes to remain in the model.
All other unconnected nodes will be removed.
:param verbose: If True, will display debug messages
:param compress_f16: If true, the float values will be converted to f16
:return:
"""
if type(verbose) == bool:
args = Struct()
args.verbose = verbose
args.print_layers = verbose
args.print_source_json = verbose
args.print_barracuda_json = verbose
args.print_layer_links = verbose
args.print_patterns = verbose
args.print_tensors = verbose
args.print_supported_ops = verbose
else:
args = verbose
if args.print_supported_ops:
barracuda.print_known_operations(known_classes, known_activations)
# Load Tensorflow model
print("Converting %s to %s" % (source_file, target_file))
f = open(source_file, "rb")
i_model = tf.GraphDef()
i_model.ParseFromString(f.read())
if args.verbose:
print("OP_TYPES:", {layer.op for layer in i_model.node})
if args.print_source_json or args.verbose:
for layer in i_model.node:
if not layer.op == "Const":
print("MODEL:", MessageToJson(layer) + ",")
# Convert
o_model = barracuda.Model()
o_model.layers, o_input_shapes, o_model.tensors, o_model.memories, o_model.globals = process_model(
i_model, args
)
# Cleanup unconnected Identities (they might linger after processing complex node patterns like LSTM)
def cleanup_layers(layers):
all_layers = {l.name for l in layers}
all_inputs = {i for l in layers for i in l.inputs}
def is_unconnected_identity(layer):
if layer.class_name == "Activation" and layer.activation == 0: # Identity
assert len(layer.inputs) == 1
if layer.inputs[0] not in all_layers and layer.name not in all_inputs:
return True
return False
return [l for l in layers if not is_unconnected_identity(l)]
o_model.layers = cleanup_layers(o_model.layers)
all_inputs = {i for l in o_model.layers for i in l.inputs}
# Trim
if trim_unused_by_output:
o_model.layers = barracuda.trim(
o_model.layers, trim_unused_by_output, args.verbose
)
# Create load layer for constants
def dims_to_barracuda_shape(dims):
shape = list(dims)
while len(shape) < 4:
shape = [1] + shape
return shape
const_tensors = [i for i in all_inputs if i in o_model.tensors]
const_tensors += o_model.globals
for x in const_tensors:
shape = dims_to_barracuda_shape(get_tensor_dims(o_model.tensors[x]))
o_l = Struct(
type=255, # Load
class_name="Const",
name=x,
pads=[0, 0, 0, 0],
strides=[],
pool_size=[],
axis=-1,
alpha=1,
beta=0,
activation=0,
inputs=[],
tensors=[
Struct(
name=x,
shape=shape,
data=np.reshape(get_tensor_data(o_model.tensors[x]), shape).astype(
np.float32
),
)
],
)
o_model.layers.insert(0, o_l)
# Find model inputs & outputs
all_layers = {l.name for l in o_model.layers}
# global inputs => are inputs that are NOT connected to any layer in the network
# global outputs => are outputs that are NOT feeding any layer in the network OR are coming from Identity layers
o_model.inputs = {
i: o_input_shapes[i]
for l in o_model.layers
for i in l.inputs
if i not in all_layers and i not in o_model.memories
}
def is_output_layer(layer):
if (
layer.class_name == "Const"
): # Constants never count as global output even when unconnected
return False
if (
layer.name not in all_inputs
): # this layer is not inputing to any other layer
return True
if (
layer.class_name == "Activation" and layer.activation == 0
): # Identity marks global output
return True
return False
o_model.outputs = [l.name for l in o_model.layers if is_output_layer(l)]
# Compress
if compress_f16:
o_model = barracuda.compress(o_model)
# Sort model so that layer inputs are always ready upfront
o_model.layers = barracuda.sort(
o_model.layers, o_model.inputs, o_model.memories, args.verbose
)
o_model.layers = barracuda.fuse(o_model.layers, args.verbose)
# Summary
barracuda.summary(
o_model,
print_layer_links=args.print_layer_links or args.verbose,
print_barracuda_json=args.print_barracuda_json or args.verbose,
print_tensors=args.print_tensors or args.verbose,
)
# Write to file
barracuda.write(o_model, target_file)
print("DONE: wrote", target_file, "file.")