Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

271 行
11 KiB

import logging
import numpy as np
from typing import Any, Dict
import tensorflow as tf
from mlagents.envs.timers import timed
from mlagents.trainers import BrainInfo, ActionInfo
from mlagents.trainers.models import EncoderType
from mlagents.trainers.ppo.models import PPOModel
from mlagents.trainers.tf_policy import TFPolicy
from mlagents.trainers.components.reward_signals.reward_signal_factory import (
create_reward_signal,
)
from mlagents.trainers.components.bc.module import BCModule
logger = logging.getLogger("mlagents.trainers")
class PPOPolicy(TFPolicy):
def __init__(self, seed, brain, trainer_params, is_training, load):
"""
Policy for Proximal Policy Optimization Networks.
:param seed: Random seed.
:param brain: Assigned Brain object.
:param trainer_params: Defined training parameters.
:param is_training: Whether the model should be trained.
:param load: Whether a pre-trained model will be loaded or a new one created.
"""
super().__init__(seed, brain, trainer_params)
reward_signal_configs = trainer_params["reward_signals"]
self.inference_dict = {}
self.update_dict = {}
self.stats_name_to_update_name = {
"Losses/Value Loss": "value_loss",
"Losses/Policy Loss": "policy_loss",
}
self.create_model(
brain, trainer_params, reward_signal_configs, is_training, load, seed
)
self.create_reward_signals(reward_signal_configs)
with self.graph.as_default():
# Create pretrainer if needed
if "pretraining" in trainer_params:
BCModule.check_config(trainer_params["pretraining"])
self.bc_module = BCModule(
self,
policy_learning_rate=trainer_params["learning_rate"],
default_batch_size=trainer_params["batch_size"],
default_num_epoch=trainer_params["num_epoch"],
**trainer_params["pretraining"],
)
else:
self.bc_module = None
if load:
self._load_graph()
else:
self._initialize_graph()
def create_model(
self, brain, trainer_params, reward_signal_configs, is_training, load, seed
):
"""
Create PPO model
:param brain: Assigned Brain object.
:param trainer_params: Defined training parameters.
:param reward_signal_configs: Reward signal config
:param seed: Random seed.
"""
with self.graph.as_default():
self.model = PPOModel(
brain=brain,
lr=float(trainer_params["learning_rate"]),
h_size=int(trainer_params["hidden_units"]),
epsilon=float(trainer_params["epsilon"]),
beta=float(trainer_params["beta"]),
max_step=float(trainer_params["max_steps"]),
normalize=trainer_params["normalize"],
use_recurrent=trainer_params["use_recurrent"],
num_layers=int(trainer_params["num_layers"]),
m_size=self.m_size,
seed=seed,
stream_names=list(reward_signal_configs.keys()),
vis_encode_type=EncoderType(
trainer_params.get("vis_encode_type", "simple")
),
)
self.model.create_ppo_optimizer()
self.inference_dict.update(
{
"action": self.model.output,
"log_probs": self.model.all_log_probs,
"value_heads": self.model.value_heads,
"value": self.model.value,
"entropy": self.model.entropy,
"learning_rate": self.model.learning_rate,
}
)
if self.use_continuous_act:
self.inference_dict["pre_action"] = self.model.output_pre
if self.use_recurrent:
self.inference_dict["memory_out"] = self.model.memory_out
if (
is_training
and self.use_vec_obs
and trainer_params["normalize"]
and not load
):
self.inference_dict["update_mean"] = self.model.update_normalization
self.total_policy_loss = self.model.abs_policy_loss
self.update_dict.update(
{
"value_loss": self.model.value_loss,
"policy_loss": self.total_policy_loss,
"update_batch": self.model.update_batch,
}
)
def create_reward_signals(self, reward_signal_configs):
"""
Create reward signals
:param reward_signal_configs: Reward signal config.
"""
self.reward_signals = {}
with self.graph.as_default():
# Create reward signals
for reward_signal, config in reward_signal_configs.items():
self.reward_signals[reward_signal] = create_reward_signal(
self, self.model, reward_signal, config
)
self.update_dict.update(self.reward_signals[reward_signal].update_dict)
@timed
def evaluate(self, brain_info):
"""
Evaluates policy for the agent experiences provided.
:param brain_info: BrainInfo object containing inputs.
:return: Outputs from network as defined by self.inference_dict.
"""
feed_dict = {
self.model.batch_size: len(brain_info.vector_observations),
self.model.sequence_length: 1,
}
epsilon = None
if self.use_recurrent:
if not self.use_continuous_act:
feed_dict[
self.model.prev_action
] = brain_info.previous_vector_actions.reshape(
[-1, len(self.model.act_size)]
)
if brain_info.memories.shape[1] == 0:
brain_info.memories = self.make_empty_memory(len(brain_info.agents))
feed_dict[self.model.memory_in] = brain_info.memories
if self.use_continuous_act:
epsilon = np.random.normal(
size=(len(brain_info.vector_observations), self.model.act_size[0])
)
feed_dict[self.model.epsilon] = epsilon
feed_dict = self.fill_eval_dict(feed_dict, brain_info)
run_out = self._execute_model(feed_dict, self.inference_dict)
if self.use_continuous_act:
run_out["random_normal_epsilon"] = epsilon
return run_out
@timed
def update(self, mini_batch, num_sequences):
"""
Performs update on model.
:param mini_batch: Batch of experiences.
:param num_sequences: Number of sequences to process.
:return: Results of update.
"""
feed_dict = self.construct_feed_dict(self.model, mini_batch, num_sequences)
stats_needed = self.stats_name_to_update_name
update_stats = {}
# Collect feed dicts for all reward signals.
for _, reward_signal in self.reward_signals.items():
feed_dict.update(
reward_signal.prepare_update(self.model, mini_batch, num_sequences)
)
stats_needed.update(reward_signal.stats_name_to_update_name)
update_vals = self._execute_model(feed_dict, self.update_dict)
for stat_name, update_name in stats_needed.items():
update_stats[stat_name] = update_vals[update_name]
return update_stats
def construct_feed_dict(self, model, mini_batch, num_sequences):
feed_dict = {
model.batch_size: num_sequences,
model.sequence_length: self.sequence_length,
model.mask_input: mini_batch["masks"],
model.advantage: mini_batch["advantages"],
model.all_old_log_probs: mini_batch["action_probs"],
}
for name in self.reward_signals:
feed_dict[model.returns_holders[name]] = mini_batch[
"{}_returns".format(name)
]
feed_dict[model.old_values[name]] = mini_batch[
"{}_value_estimates".format(name)
]
if self.use_continuous_act:
feed_dict[model.output_pre] = mini_batch["actions_pre"]
feed_dict[model.epsilon] = mini_batch["random_normal_epsilon"]
else:
feed_dict[model.action_holder] = mini_batch["actions"]
if self.use_recurrent:
feed_dict[model.prev_action] = mini_batch["prev_action"]
feed_dict[model.action_masks] = mini_batch["action_mask"]
if self.use_vec_obs:
feed_dict[model.vector_in] = mini_batch["vector_obs"]
if self.model.vis_obs_size > 0:
for i, _ in enumerate(self.model.visual_in):
feed_dict[model.visual_in[i]] = mini_batch["visual_obs%d" % i]
if self.use_recurrent:
mem_in = [
mini_batch["memory"][i]
for i in range(0, len(mini_batch["memory"]), self.sequence_length)
]
feed_dict[model.memory_in] = mem_in
return feed_dict
def get_value_estimates(
self, brain_info: BrainInfo, idx: int, done: bool
) -> Dict[str, float]:
"""
Generates value estimates for bootstrapping.
:param brain_info: BrainInfo to be used for bootstrapping.
:param idx: Index in BrainInfo of agent.
:param done: Whether or not this is the last element of the episode, in which case the value estimate will be 0.
:return: The value estimate dictionary with key being the name of the reward signal and the value the
corresponding value estimate.
"""
feed_dict: Dict[tf.Tensor, Any] = {
self.model.batch_size: 1,
self.model.sequence_length: 1,
}
for i in range(len(brain_info.visual_observations)):
feed_dict[self.model.visual_in[i]] = [
brain_info.visual_observations[i][idx]
]
if self.use_vec_obs:
feed_dict[self.model.vector_in] = [brain_info.vector_observations[idx]]
if self.use_recurrent:
if brain_info.memories.shape[1] == 0:
brain_info.memories = self.make_empty_memory(len(brain_info.agents))
feed_dict[self.model.memory_in] = [brain_info.memories[idx]]
if not self.use_continuous_act and self.use_recurrent:
feed_dict[self.model.prev_action] = [
brain_info.previous_vector_actions[idx]
]
value_estimates = self.sess.run(self.model.value_heads, feed_dict)
value_estimates = {k: float(v) for k, v in value_estimates.items()}
# If we're done, reassign all of the value estimates that need terminal states.
if done:
for k in value_estimates:
if self.reward_signals[k].use_terminal_states:
value_estimates[k] = 0.0
return value_estimates