您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
56 行
3.8 KiB
56 行
3.8 KiB
import tensorflow as tf
|
|
import tensorflow.contrib.layers as c_layers
|
|
from mlagents.trainers.models import LearningModel
|
|
|
|
|
|
class BehavioralCloningModel(LearningModel):
|
|
def __init__(self, brain, h_size=128, lr=1e-4, n_layers=2, m_size=128,
|
|
normalize=False, use_recurrent=False, scope='PPO', seed=0):
|
|
with tf.variable_scope(scope):
|
|
LearningModel.__init__(self, m_size, normalize, use_recurrent, brain, seed)
|
|
num_streams = 1
|
|
hidden_streams = self.create_observation_streams(num_streams, h_size, n_layers)
|
|
hidden = hidden_streams[0]
|
|
self.dropout_rate = tf.placeholder(dtype=tf.float32, shape=[], name="dropout_rate")
|
|
hidden_reg = tf.layers.dropout(hidden, self.dropout_rate)
|
|
if self.use_recurrent:
|
|
tf.Variable(self.m_size, name="memory_size", trainable=False, dtype=tf.int32)
|
|
self.memory_in = tf.placeholder(shape=[None, self.m_size], dtype=tf.float32, name='recurrent_in')
|
|
hidden_reg, self.memory_out = self.create_recurrent_encoder(hidden_reg, self.memory_in,
|
|
self.sequence_length)
|
|
self.memory_out = tf.identity(self.memory_out, name='recurrent_out')
|
|
|
|
if brain.vector_action_space_type == "discrete":
|
|
policy_branches = []
|
|
for size in self.act_size:
|
|
policy_branches.append(
|
|
tf.layers.dense(
|
|
hidden,
|
|
size,
|
|
activation=None,
|
|
use_bias=False,
|
|
kernel_initializer=c_layers.variance_scaling_initializer(factor=0.01)))
|
|
self.action_probs = tf.concat(
|
|
[tf.nn.softmax(branch) for branch in policy_branches], axis=1, name="action_probs")
|
|
self.action_masks = tf.placeholder(shape=[None, sum(self.act_size)], dtype=tf.float32, name="action_masks")
|
|
self.sample_action_float, _ = self.create_discrete_action_masking_layer(
|
|
tf.concat(policy_branches, axis = 1), self.action_masks, self.act_size)
|
|
self.sample_action_float = tf.identity(self.sample_action_float, name="action")
|
|
self.sample_action = tf.cast(self.sample_action_float, tf.int32)
|
|
self.true_action = tf.placeholder(shape=[None, len(policy_branches)], dtype=tf.int32, name="teacher_action")
|
|
self.action_oh = tf.concat([
|
|
tf.one_hot(self.true_action[:, i], self.act_size[i]) for i in range(len(self.act_size))], axis=1)
|
|
self.loss = tf.reduce_sum(-tf.log(self.action_probs + 1e-10) * self.action_oh)
|
|
self.action_percent = tf.reduce_mean(tf.cast(
|
|
tf.equal(tf.cast(tf.argmax(self.action_probs, axis=1), tf.int32), self.sample_action), tf.float32))
|
|
else:
|
|
self.policy = tf.layers.dense(hidden_reg, self.act_size[0], activation=None, use_bias=False, name='pre_action',
|
|
kernel_initializer=c_layers.variance_scaling_initializer(factor=0.01))
|
|
self.clipped_sample_action = tf.clip_by_value(self.policy, -1, 1)
|
|
self.sample_action = tf.identity(self.clipped_sample_action, name="action")
|
|
self.true_action = tf.placeholder(shape=[None, self.act_size[0]], dtype=tf.float32, name="teacher_action")
|
|
self.clipped_true_action = tf.clip_by_value(self.true_action, -1, 1)
|
|
self.loss = tf.reduce_sum(tf.squared_difference(self.clipped_true_action, self.sample_action))
|
|
|
|
optimizer = tf.train.AdamOptimizer(learning_rate=lr)
|
|
self.update = optimizer.minimize(self.loss)
|