Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

309 行
14 KiB

# # Unity ML-Agents Toolkit
# ## ML-Agent Learning
"""Launches trainers for each External Brains in a Unity Environment."""
import os
import logging
import shutil
import sys
from typing import *
import numpy as np
import tensorflow as tf
from time import time
from mlagents.envs import AllBrainInfo, BrainParameters
from mlagents.envs.base_unity_environment import BaseUnityEnvironment
from mlagents.envs.exception import UnityEnvironmentException
from mlagents.trainers import Trainer, Policy
from mlagents.trainers.ppo.trainer import PPOTrainer
from mlagents.trainers.bc.offline_trainer import OfflineBCTrainer
from mlagents.trainers.bc.online_trainer import OnlineBCTrainer
from mlagents.trainers.meta_curriculum import MetaCurriculum
class TrainerController(object):
def __init__(self,
model_path: str,
summaries_dir: str,
run_id: str,
save_freq: int,
meta_curriculum: Optional[MetaCurriculum],
load: bool,
train: bool,
keep_checkpoints: int,
lesson: Optional[int],
external_brains: Dict[str, BrainParameters],
training_seed: int):
"""
:param model_path: Path to save the model.
:param summaries_dir: Folder to save training summaries.
:param run_id: The sub-directory name for model and summary statistics
:param save_freq: Frequency at which to save model
:param meta_curriculum: MetaCurriculum object which stores information about all curricula.
:param load: Whether to load the model or randomly initialize.
:param train: Whether to train model, or only run inference.
:param keep_checkpoints: How many model checkpoints to keep.
:param lesson: Start learning from this lesson.
:param external_brains: dictionary of external brain names to BrainInfo objects.
:param training_seed: Seed to use for Numpy and Tensorflow random number generation.
"""
self.model_path = model_path
self.summaries_dir = summaries_dir
self.external_brains = external_brains
self.external_brain_names = external_brains.keys()
self.logger = logging.getLogger('mlagents.envs')
self.run_id = run_id
self.save_freq = save_freq
self.lesson = lesson
self.load_model = load
self.train_model = train
self.keep_checkpoints = keep_checkpoints
self.trainers: Dict[str, Trainer] = {}
self.trainer_metrics: Dict[str, TrainerMetrics] = {}
self.global_step = 0
self.meta_curriculum = meta_curriculum
self.seed = training_seed
self.training_start_time = time()
np.random.seed(self.seed)
tf.set_random_seed(self.seed)
def _get_measure_vals(self):
if self.meta_curriculum:
brain_names_to_measure_vals = {}
for brain_name, curriculum \
in self.meta_curriculum.brains_to_curriculums.items():
if curriculum.measure == 'progress':
measure_val = (self.trainers[brain_name].get_step /
self.trainers[brain_name].get_max_steps)
brain_names_to_measure_vals[brain_name] = measure_val
elif curriculum.measure == 'reward':
measure_val = np.mean(self.trainers[brain_name]
.reward_buffer)
brain_names_to_measure_vals[brain_name] = measure_val
return brain_names_to_measure_vals
else:
return None
def _save_model(self, steps=0):
"""
Saves current model to checkpoint folder.
:param steps: Current number of steps in training process.
:param saver: Tensorflow saver for session.
"""
for brain_name in self.trainers.keys():
self.trainers[brain_name].save_model()
self.logger.info('Saved Model')
def _save_model_when_interrupted(self, steps=0):
self.logger.info('Learning was interrupted. Please wait '
'while the graph is generated.')
self._save_model(steps)
def _write_training_metrics(self):
"""
Write all CSV metrics
:return:
"""
for brain_name in self.trainers.keys():
if brain_name in self.trainer_metrics:
self.trainers[brain_name].write_training_metrics()
def _export_graph(self):
"""
Exports latest saved models to .nn format for Unity embedding.
"""
for brain_name in self.trainers.keys():
self.trainers[brain_name].export_model()
def initialize_trainers(self, trainer_config: Dict[str, Dict[str, str]]):
"""
Initialization of the trainers
:param trainer_config: The configurations of the trainers
"""
trainer_parameters_dict = {}
for brain_name in self.external_brains:
trainer_parameters = trainer_config['default'].copy()
trainer_parameters['summary_path'] = '{basedir}/{name}'.format(
basedir=self.summaries_dir,
name=str(self.run_id) + '_' + brain_name)
trainer_parameters['model_path'] = '{basedir}/{name}'.format(
basedir=self.model_path,
name=brain_name)
trainer_parameters['keep_checkpoints'] = self.keep_checkpoints
if brain_name in trainer_config:
_brain_key = brain_name
while not isinstance(trainer_config[_brain_key], dict):
_brain_key = trainer_config[_brain_key]
for k in trainer_config[_brain_key]:
trainer_parameters[k] = trainer_config[_brain_key][k]
trainer_parameters_dict[brain_name] = trainer_parameters.copy()
for brain_name in self.external_brains:
if trainer_parameters_dict[brain_name]['trainer'] == 'offline_bc':
self.trainers[brain_name] = OfflineBCTrainer(
self.external_brains[brain_name],
trainer_parameters_dict[brain_name], self.train_model,
self.load_model, self.seed, self.run_id)
elif trainer_parameters_dict[brain_name]['trainer'] == 'online_bc':
self.trainers[brain_name] = OnlineBCTrainer(
self.external_brains[brain_name],
trainer_parameters_dict[brain_name], self.train_model,
self.load_model, self.seed, self.run_id)
elif trainer_parameters_dict[brain_name]['trainer'] == 'ppo':
self.trainers[brain_name] = PPOTrainer(
self.external_brains[brain_name],
self.meta_curriculum
.brains_to_curriculums[brain_name]
.min_lesson_length if self.meta_curriculum else 0,
trainer_parameters_dict[brain_name],
self.train_model, self.load_model, self.seed,
self.run_id)
self.trainer_metrics[brain_name] = self.trainers[brain_name].trainer_metrics
else:
raise UnityEnvironmentException('The trainer config contains '
'an unknown trainer type for '
'brain {}'
.format(brain_name))
@staticmethod
def _create_model_path(model_path):
try:
if not os.path.exists(model_path):
os.makedirs(model_path)
except Exception:
raise UnityEnvironmentException('The folder {} containing the '
'generated model could not be '
'accessed. Please make sure the '
'permissions are set correctly.'
.format(model_path))
def _reset_env(self, env: BaseUnityEnvironment):
"""Resets the environment.
Returns:
A Data structure corresponding to the initial reset state of the
environment.
"""
if self.meta_curriculum is not None:
return env.reset(config=self.meta_curriculum.get_config())
else:
return env.reset()
def start_learning(self, env: BaseUnityEnvironment, trainer_config):
# TODO: Should be able to start learning at different lesson numbers
# for each curriculum.
if self.meta_curriculum is not None:
self.meta_curriculum.set_all_curriculums_to_lesson_num(self.lesson)
self._create_model_path(self.model_path)
tf.reset_default_graph()
# Prevent a single session from taking all GPU memory.
self.initialize_trainers(trainer_config)
for _, t in self.trainers.items():
self.logger.info(t)
if self.train_model:
for brain_name, trainer in self.trainers.items():
trainer.write_tensorboard_text('Hyperparameters',
trainer.parameters)
try:
curr_info = self._reset_env(env)
while any([t.get_step <= t.get_max_steps \
for k, t in self.trainers.items()]) \
or not self.train_model:
new_info = self.take_step(env, curr_info)
self.global_step += 1
if self.global_step % self.save_freq == 0 and self.global_step != 0 \
and self.train_model:
# Save Tensorflow model
self._save_model(steps=self.global_step)
curr_info = new_info
# Final save Tensorflow model
if self.global_step != 0 and self.train_model:
self._save_model(steps=self.global_step)
except KeyboardInterrupt:
if self.train_model:
self._save_model_when_interrupted(steps=self.global_step)
pass
env.close()
if self.train_model:
self._write_training_metrics()
self._export_graph()
def take_step(self, env: BaseUnityEnvironment, curr_info: AllBrainInfo):
if self.meta_curriculum:
# Get the sizes of the reward buffers.
reward_buff_sizes = {k: len(t.reward_buffer)
for (k, t) in self.trainers.items()}
# Attempt to increment the lessons of the brains who
# were ready.
lessons_incremented = \
self.meta_curriculum.increment_lessons(
self._get_measure_vals(),
reward_buff_sizes=reward_buff_sizes)
else:
lessons_incremented = {}
# If any lessons were incremented or the environment is
# ready to be reset
if (self.meta_curriculum
and any(lessons_incremented.values())):
curr_info = self._reset_env(env)
for brain_name, trainer in self.trainers.items():
trainer.end_episode()
for brain_name, changed in lessons_incremented.items():
if changed:
self.trainers[brain_name].reward_buffer.clear()
elif env.global_done:
curr_info = self._reset_env(env)
for brain_name, trainer in self.trainers.items():
trainer.end_episode()
# Decide and take an action
take_action_vector = {}
take_action_memories = {}
take_action_text = {}
take_action_value = {}
take_action_outputs = {}
for brain_name, trainer in self.trainers.items():
action_info = trainer.get_action(curr_info[brain_name])
take_action_vector[brain_name] = action_info.action
take_action_memories[brain_name] = action_info.memory
take_action_text[brain_name] = action_info.text
take_action_value[brain_name] = action_info.value
take_action_outputs[brain_name] = action_info.outputs
time_start_step = time()
new_info = env.step(
vector_action=take_action_vector,
memory=take_action_memories,
text_action=take_action_text,
value=take_action_value
)
delta_time_step = time() - time_start_step
for brain_name, trainer in self.trainers.items():
if brain_name in self.trainer_metrics:
self.trainer_metrics[brain_name].add_delta_step(delta_time_step)
trainer.add_experiences(curr_info, new_info,
take_action_outputs[brain_name])
trainer.process_experiences(curr_info, new_info)
if trainer.is_ready_update() and self.train_model \
and trainer.get_step <= trainer.get_max_steps:
# Perform gradient descent with experience buffer
trainer.update_policy()
# Write training statistics to Tensorboard.
delta_train_start = time() - self.training_start_time
if self.meta_curriculum is not None:
trainer.write_summary(
self.global_step,
delta_train_start, lesson_num=self.meta_curriculum
.brains_to_curriculums[brain_name]
.lesson_num)
else:
trainer.write_summary(self.global_step, delta_train_start)
if self.train_model \
and trainer.get_step <= trainer.get_max_steps:
trainer.increment_step_and_update_last_reward()
return new_info