您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
142 行
5.6 KiB
142 行
5.6 KiB
import pathlib
|
|
import logging
|
|
import os
|
|
from typing import List, Tuple
|
|
import numpy as np
|
|
from mlagents.trainers.buffer import Buffer
|
|
from mlagents.envs.brain import BrainParameters, BrainInfo
|
|
from mlagents.envs.communicator_objects.agent_info_action_pair_pb2 import (
|
|
AgentInfoActionPairProto,
|
|
)
|
|
from mlagents.envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto
|
|
from mlagents.envs.communicator_objects.demonstration_meta_pb2 import (
|
|
DemonstrationMetaProto,
|
|
)
|
|
from google.protobuf.internal.decoder import _DecodeVarint32 # type: ignore
|
|
|
|
|
|
logger = logging.getLogger("mlagents.trainers")
|
|
|
|
|
|
def make_demo_buffer(
|
|
pair_infos: List[AgentInfoActionPairProto],
|
|
brain_params: BrainParameters,
|
|
sequence_length: int,
|
|
) -> Buffer:
|
|
# Create and populate buffer using experiences
|
|
demo_buffer = Buffer()
|
|
for idx, experience in enumerate(pair_infos):
|
|
if idx > len(pair_infos) - 2:
|
|
break
|
|
current_pair_info = pair_infos[idx]
|
|
next_pair_info = pair_infos[idx + 1]
|
|
current_brain_info = BrainInfo.from_agent_proto(
|
|
0, [current_pair_info.agent_info], brain_params
|
|
)
|
|
next_brain_info = BrainInfo.from_agent_proto(
|
|
0, [next_pair_info.agent_info], brain_params
|
|
)
|
|
previous_action = np.array(pair_infos[idx].action_info.vector_actions) * 0
|
|
if idx > 0:
|
|
previous_action = np.array(pair_infos[idx - 1].action_info.vector_actions)
|
|
demo_buffer[0].last_brain_info = current_brain_info
|
|
demo_buffer[0]["done"].append(next_brain_info.local_done[0])
|
|
demo_buffer[0]["rewards"].append(next_brain_info.rewards[0])
|
|
for i in range(brain_params.number_visual_observations):
|
|
demo_buffer[0]["visual_obs%d" % i].append(
|
|
current_brain_info.visual_observations[i][0]
|
|
)
|
|
if brain_params.vector_observation_space_size > 0:
|
|
demo_buffer[0]["vector_obs"].append(
|
|
current_brain_info.vector_observations[0]
|
|
)
|
|
demo_buffer[0]["actions"].append(current_pair_info.action_info.vector_actions)
|
|
demo_buffer[0]["prev_action"].append(previous_action)
|
|
if next_brain_info.local_done[0]:
|
|
demo_buffer.append_update_buffer(
|
|
0, batch_size=None, training_length=sequence_length
|
|
)
|
|
demo_buffer.reset_local_buffers()
|
|
demo_buffer.append_update_buffer(
|
|
0, batch_size=None, training_length=sequence_length
|
|
)
|
|
return demo_buffer
|
|
|
|
|
|
def demo_to_buffer(
|
|
file_path: str, sequence_length: int
|
|
) -> Tuple[BrainParameters, Buffer]:
|
|
"""
|
|
Loads demonstration file and uses it to fill training buffer.
|
|
:param file_path: Location of demonstration file (.demo).
|
|
:param sequence_length: Length of trajectories to fill buffer.
|
|
:return:
|
|
"""
|
|
brain_params, info_action_pair, _ = load_demonstration(file_path)
|
|
demo_buffer = make_demo_buffer(info_action_pair, brain_params, sequence_length)
|
|
return brain_params, demo_buffer
|
|
|
|
|
|
def load_demonstration(
|
|
file_path: str
|
|
) -> Tuple[BrainParameters, List[AgentInfoActionPairProto], int]:
|
|
"""
|
|
Loads and parses a demonstration file.
|
|
:param file_path: Location of demonstration file (.demo).
|
|
:return: BrainParameter and list of AgentInfoActionPairProto containing demonstration data.
|
|
"""
|
|
|
|
# First 32 bytes of file dedicated to meta-data.
|
|
INITIAL_POS = 33
|
|
file_paths = []
|
|
if os.path.isdir(file_path):
|
|
all_files = os.listdir(file_path)
|
|
for _file in all_files:
|
|
if _file.endswith(".demo"):
|
|
file_paths.append(os.path.join(file_path, _file))
|
|
if not all_files:
|
|
raise ValueError("There are no '.demo' files in the provided directory.")
|
|
elif os.path.isfile(file_path):
|
|
file_paths.append(file_path)
|
|
file_extension = pathlib.Path(file_path).suffix
|
|
if file_extension != ".demo":
|
|
raise ValueError(
|
|
"The file is not a '.demo' file. Please provide a file with the "
|
|
"correct extension."
|
|
)
|
|
else:
|
|
raise FileNotFoundError(
|
|
"The demonstration file or directory {} does not exist.".format(file_path)
|
|
)
|
|
|
|
brain_params = None
|
|
brain_param_proto = None
|
|
info_action_pairs = []
|
|
total_expected = 0
|
|
for _file_path in file_paths:
|
|
data = open(_file_path, "rb").read()
|
|
next_pos, pos, obs_decoded = 0, 0, 0
|
|
while pos < len(data):
|
|
next_pos, pos = _DecodeVarint32(data, pos)
|
|
if obs_decoded == 0:
|
|
meta_data_proto = DemonstrationMetaProto()
|
|
meta_data_proto.ParseFromString(data[pos : pos + next_pos])
|
|
total_expected += meta_data_proto.number_steps
|
|
pos = INITIAL_POS
|
|
if obs_decoded == 1:
|
|
brain_param_proto = BrainParametersProto()
|
|
brain_param_proto.ParseFromString(data[pos : pos + next_pos])
|
|
pos += next_pos
|
|
if obs_decoded > 1:
|
|
agent_info_action = AgentInfoActionPairProto()
|
|
agent_info_action.ParseFromString(data[pos : pos + next_pos])
|
|
if brain_params is None:
|
|
brain_params = BrainParameters.from_proto(
|
|
brain_param_proto, agent_info_action.agent_info
|
|
)
|
|
info_action_pairs.append(agent_info_action)
|
|
if len(info_action_pairs) == total_expected:
|
|
break
|
|
pos += next_pos
|
|
obs_decoded += 1
|
|
return brain_params, info_action_pairs, total_expected
|