您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
181 行
6.2 KiB
181 行
6.2 KiB
import os
|
|
import yaml
|
|
from typing import Any, Dict, TextIO
|
|
import logging
|
|
|
|
from mlagents.trainers.meta_curriculum import MetaCurriculum
|
|
from mlagents.trainers.exception import TrainerConfigError
|
|
from mlagents.trainers.trainer import Trainer, UnityTrainerException
|
|
from mlagents.trainers.ppo.trainer import PPOTrainer
|
|
from mlagents.trainers.sac.trainer import SACTrainer
|
|
|
|
logger = logging.getLogger("mlagents.trainers")
|
|
|
|
|
|
class TrainerFactory:
|
|
def __init__(
|
|
self,
|
|
trainer_config: Any,
|
|
summaries_dir: str,
|
|
run_id: str,
|
|
model_path: str,
|
|
keep_checkpoints: int,
|
|
train_model: bool,
|
|
load_model: bool,
|
|
seed: int,
|
|
meta_curriculum: MetaCurriculum = None,
|
|
multi_gpu: bool = False,
|
|
):
|
|
self.trainer_config = trainer_config
|
|
self.summaries_dir = summaries_dir
|
|
self.run_id = run_id
|
|
self.model_path = model_path
|
|
self.keep_checkpoints = keep_checkpoints
|
|
self.train_model = train_model
|
|
self.load_model = load_model
|
|
self.seed = seed
|
|
self.meta_curriculum = meta_curriculum
|
|
self.multi_gpu = multi_gpu
|
|
|
|
def generate(self, brain_name: str) -> Trainer:
|
|
return initialize_trainer(
|
|
self.trainer_config,
|
|
brain_name,
|
|
self.summaries_dir,
|
|
self.run_id,
|
|
self.model_path,
|
|
self.keep_checkpoints,
|
|
self.train_model,
|
|
self.load_model,
|
|
self.seed,
|
|
self.meta_curriculum,
|
|
self.multi_gpu,
|
|
)
|
|
|
|
|
|
def initialize_trainer(
|
|
trainer_config: Any,
|
|
brain_name: str,
|
|
summaries_dir: str,
|
|
run_id: str,
|
|
model_path: str,
|
|
keep_checkpoints: int,
|
|
train_model: bool,
|
|
load_model: bool,
|
|
seed: int,
|
|
meta_curriculum: MetaCurriculum = None,
|
|
multi_gpu: bool = False,
|
|
) -> Trainer:
|
|
"""
|
|
Initializes a trainer given a provided trainer configuration and brain parameters, as well as
|
|
some general training session options.
|
|
|
|
:param trainer_config: Original trainer configuration loaded from YAML
|
|
:param brain_name: Name of the brain to be associated with trainer
|
|
:param summaries_dir: Directory to store trainer summary statistics
|
|
:param run_id: Run ID to associate with this training run
|
|
:param model_path: Path to save the model
|
|
:param keep_checkpoints: How many model checkpoints to keep
|
|
:param train_model: Whether to train the model (vs. run inference)
|
|
:param load_model: Whether to load the model or randomly initialize
|
|
:param seed: The random seed to use
|
|
:param meta_curriculum: Optional meta_curriculum, used to determine a reward buffer length for PPOTrainer
|
|
:param multi_gpu: Whether to use multi-GPU training
|
|
:return:
|
|
"""
|
|
if "default" not in trainer_config and brain_name not in trainer_config:
|
|
raise TrainerConfigError(
|
|
f'Trainer config must have either a "default" section, or a section for the brain name ({brain_name}). '
|
|
"See config/trainer_config.yaml for an example."
|
|
)
|
|
|
|
trainer_parameters = trainer_config.get("default", {}).copy()
|
|
trainer_parameters["summary_path"] = str(run_id) + "_" + brain_name
|
|
trainer_parameters["model_path"] = "{basedir}/{name}".format(
|
|
basedir=model_path, name=brain_name
|
|
)
|
|
trainer_parameters["keep_checkpoints"] = keep_checkpoints
|
|
if brain_name in trainer_config:
|
|
_brain_key: Any = brain_name
|
|
while not isinstance(trainer_config[_brain_key], dict):
|
|
_brain_key = trainer_config[_brain_key]
|
|
trainer_parameters.update(trainer_config[_brain_key])
|
|
|
|
min_lesson_length = 1
|
|
if meta_curriculum:
|
|
if brain_name in meta_curriculum.brains_to_curricula:
|
|
min_lesson_length = meta_curriculum.brains_to_curricula[
|
|
brain_name
|
|
].min_lesson_length
|
|
else:
|
|
logger.warning(
|
|
f"Metacurriculum enabled, but no curriculum for brain {brain_name}. "
|
|
f"Brains with curricula: {meta_curriculum.brains_to_curricula.keys()}. "
|
|
)
|
|
|
|
trainer: Trainer = None # type: ignore # will be set to one of these, or raise
|
|
if "trainer" not in trainer_parameters:
|
|
raise TrainerConfigError(
|
|
f'The "trainer" key must be set in your trainer config for brain {brain_name} (or the default brain).'
|
|
)
|
|
trainer_type = trainer_parameters["trainer"]
|
|
|
|
if trainer_type == "offline_bc":
|
|
raise UnityTrainerException(
|
|
"The offline_bc trainer has been removed. To train with demonstrations, "
|
|
"please use a PPO or SAC trainer with the GAIL Reward Signal and/or the "
|
|
"Behavioral Cloning feature enabled."
|
|
)
|
|
elif trainer_type == "ppo":
|
|
trainer = PPOTrainer(
|
|
brain_name,
|
|
min_lesson_length,
|
|
trainer_parameters,
|
|
train_model,
|
|
load_model,
|
|
seed,
|
|
run_id,
|
|
multi_gpu,
|
|
)
|
|
elif trainer_type == "sac":
|
|
trainer = SACTrainer(
|
|
brain_name,
|
|
min_lesson_length,
|
|
trainer_parameters,
|
|
train_model,
|
|
load_model,
|
|
seed,
|
|
run_id,
|
|
)
|
|
else:
|
|
raise TrainerConfigError(
|
|
f'The trainer config contains an unknown trainer type "{trainer_type}" for brain {brain_name}'
|
|
)
|
|
return trainer
|
|
|
|
|
|
def load_config(config_path: str) -> Dict[str, Any]:
|
|
try:
|
|
with open(config_path) as data_file:
|
|
return _load_config(data_file)
|
|
except IOError:
|
|
abs_path = os.path.abspath(config_path)
|
|
raise TrainerConfigError(f"Config file could not be found at {abs_path}.")
|
|
except UnicodeDecodeError:
|
|
raise TrainerConfigError(
|
|
f"There was an error decoding Config file from {config_path}. "
|
|
f"Make sure your file is save using UTF-8"
|
|
)
|
|
|
|
|
|
def _load_config(fp: TextIO) -> Dict[str, Any]:
|
|
"""
|
|
Load the yaml config from the file-like object.
|
|
"""
|
|
try:
|
|
return yaml.safe_load(fp)
|
|
except yaml.parser.ParserError as e:
|
|
raise TrainerConfigError(
|
|
"Error parsing yaml file. Please check for formatting errors. "
|
|
"A tool such as http://www.yamllint.com/ can be helpful with this."
|
|
) from e
|