您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
251 行
9.9 KiB
251 行
9.9 KiB
from typing import Dict, cast
|
|
from mlagents.torch_utils import torch
|
|
|
|
from mlagents.trainers.buffer import AgentBuffer
|
|
|
|
from mlagents_envs.timers import timed
|
|
from mlagents.trainers.policy.torch_policy import TorchPolicy
|
|
from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer
|
|
from mlagents.trainers.settings import TrainerSettings, PPOSettings
|
|
from mlagents.trainers.torch.agent_action import AgentAction
|
|
from mlagents.trainers.torch.action_log_probs import ActionLogProbs
|
|
from mlagents.trainers.torch.utils import ModelUtils
|
|
from mlagents.trainers.trajectory import ObsUtil, TeamObsUtil
|
|
|
|
|
|
class TorchPPOOptimizer(TorchOptimizer):
|
|
def __init__(self, policy: TorchPolicy, trainer_settings: TrainerSettings):
|
|
"""
|
|
Takes a Policy and a Dict of trainer parameters and creates an Optimizer around the policy.
|
|
The PPO optimizer has a value estimator and a loss function.
|
|
:param policy: A TorchPolicy object that will be updated by this PPO Optimizer.
|
|
:param trainer_params: Trainer parameters dictionary that specifies the
|
|
properties of the trainer.
|
|
"""
|
|
# Create the graph here to give more granular control of the TF graph to the Optimizer.
|
|
|
|
super().__init__(policy, trainer_settings)
|
|
params = list(self.policy.actor_critic.parameters())
|
|
self.hyperparameters: PPOSettings = cast(
|
|
PPOSettings, trainer_settings.hyperparameters
|
|
)
|
|
self.decay_learning_rate = ModelUtils.DecayedValue(
|
|
self.hyperparameters.learning_rate_schedule,
|
|
self.hyperparameters.learning_rate,
|
|
1e-10,
|
|
self.trainer_settings.max_steps,
|
|
)
|
|
self.decay_epsilon = ModelUtils.DecayedValue(
|
|
self.hyperparameters.learning_rate_schedule,
|
|
self.hyperparameters.epsilon,
|
|
0.1,
|
|
self.trainer_settings.max_steps,
|
|
)
|
|
self.decay_beta = ModelUtils.DecayedValue(
|
|
self.hyperparameters.learning_rate_schedule,
|
|
self.hyperparameters.beta,
|
|
1e-5,
|
|
self.trainer_settings.max_steps,
|
|
)
|
|
|
|
self.optimizer = torch.optim.Adam(
|
|
params, lr=self.trainer_settings.hyperparameters.learning_rate, weight_decay=1e-6
|
|
)
|
|
self.stats_name_to_update_name = {
|
|
"Losses/Value Loss": "value_loss",
|
|
"Losses/Policy Loss": "policy_loss",
|
|
}
|
|
|
|
self.stream_names = list(self.reward_signals.keys())
|
|
|
|
# ModelUtils.soft_update(
|
|
# self.policy.actor_critic.critic, self.policy.actor_critic.target, 1.0
|
|
# )
|
|
|
|
def ppo_value_loss(
|
|
self,
|
|
values: Dict[str, torch.Tensor],
|
|
old_values: Dict[str, torch.Tensor],
|
|
returns: Dict[str, torch.Tensor],
|
|
epsilon: float,
|
|
loss_masks: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Evaluates value loss for PPO.
|
|
:param values: Value output of the current network.
|
|
:param old_values: Value stored with experiences in buffer.
|
|
:param returns: Computed returns.
|
|
:param epsilon: Clipping value for value estimate.
|
|
:param loss_mask: Mask for losses. Used with LSTM to ignore 0'ed out experiences.
|
|
"""
|
|
value_losses = []
|
|
for name, head in values.items():
|
|
old_val_tensor = old_values[name]
|
|
returns_tensor = returns[name]
|
|
clipped_value_estimate = old_val_tensor + torch.clamp(
|
|
head - old_val_tensor, -1 * epsilon, epsilon
|
|
)
|
|
v_opt_a = (returns_tensor - head) ** 2
|
|
v_opt_b = (returns_tensor - clipped_value_estimate) ** 2
|
|
value_loss = ModelUtils.masked_mean(torch.max(v_opt_a, v_opt_b), loss_masks)
|
|
value_losses.append(value_loss)
|
|
value_loss = torch.mean(torch.stack(value_losses))
|
|
return value_loss
|
|
|
|
def coma_regularizer_loss(self, values: Dict[str, torch.Tensor], baseline_values: Dict[str, torch.Tensor]):
|
|
reg_losses = []
|
|
for name, head in values.items():
|
|
reg_loss = torch.nn.functional.mse_loss(head, baseline_values[name])
|
|
reg_losses.append(reg_loss)
|
|
value_loss = torch.mean(torch.stack(reg_losses))
|
|
return value_loss
|
|
|
|
def ppo_policy_loss(
|
|
self,
|
|
advantages: torch.Tensor,
|
|
log_probs: torch.Tensor,
|
|
old_log_probs: torch.Tensor,
|
|
loss_masks: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Evaluate PPO policy loss.
|
|
:param advantages: Computed advantages.
|
|
:param log_probs: Current policy probabilities
|
|
:param old_log_probs: Past policy probabilities
|
|
:param loss_masks: Mask for losses. Used with LSTM to ignore 0'ed out experiences.
|
|
"""
|
|
advantage = advantages.unsqueeze(-1)
|
|
|
|
decay_epsilon = self.hyperparameters.epsilon
|
|
r_theta = torch.exp(log_probs - old_log_probs)
|
|
p_opt_a = r_theta * advantage
|
|
p_opt_b = (
|
|
torch.clamp(r_theta, 1.0 - decay_epsilon, 1.0 + decay_epsilon) * advantage
|
|
)
|
|
policy_loss = -1 * ModelUtils.masked_mean(
|
|
torch.min(p_opt_a, p_opt_b), loss_masks
|
|
)
|
|
return policy_loss
|
|
|
|
@timed
|
|
def update(self, batch: AgentBuffer, num_sequences: int) -> Dict[str, float]:
|
|
"""
|
|
Performs update on model.
|
|
:param batch: Batch of experiences.
|
|
:param num_sequences: Number of sequences to process.
|
|
:return: Results of update.
|
|
"""
|
|
# Get decayed parameters
|
|
decay_lr = self.decay_learning_rate.get_value(self.policy.get_current_step())
|
|
decay_eps = self.decay_epsilon.get_value(self.policy.get_current_step())
|
|
decay_bet = self.decay_beta.get_value(self.policy.get_current_step())
|
|
# returns_b = {}
|
|
returns_v = {}
|
|
old_values = {}
|
|
old_marg_values = {}
|
|
for name in self.reward_signals:
|
|
old_values[name] = ModelUtils.list_to_tensor(
|
|
batch[f"{name}_value_estimates"]
|
|
)
|
|
old_marg_values[name] = ModelUtils.list_to_tensor(
|
|
batch[f"{name}_baseline_estimates"]
|
|
)
|
|
returns_v[name] = ModelUtils.list_to_tensor(batch[f"{name}_returns_v"])
|
|
# returns_b[name] = ModelUtils.list_to_tensor(batch[f"{name}_returns_b"])
|
|
#
|
|
|
|
n_obs = len(self.policy.behavior_spec.sensor_specs)
|
|
current_obs = ObsUtil.from_buffer(batch, n_obs)
|
|
# Convert to tensors
|
|
current_obs = [ModelUtils.list_to_tensor(obs) for obs in current_obs]
|
|
|
|
team_obs = TeamObsUtil.from_buffer(batch, n_obs)
|
|
team_obs = [
|
|
[ModelUtils.list_to_tensor(obs) for obs in _teammate_obs]
|
|
for _teammate_obs in team_obs
|
|
]
|
|
|
|
act_masks = ModelUtils.list_to_tensor(batch["action_mask"])
|
|
actions = AgentAction.from_dict(batch)
|
|
team_actions = AgentAction.from_team_dict(batch)
|
|
# next_team_actions = AgentAction.from_team_dict_next(batch)
|
|
|
|
memories = [
|
|
ModelUtils.list_to_tensor(batch["memory"][i])
|
|
for i in range(0, len(batch["memory"]), self.policy.sequence_length)
|
|
]
|
|
if len(memories) > 0:
|
|
memories = torch.stack(memories).unsqueeze(0)
|
|
|
|
log_probs, entropy, baseline_vals, values = self.policy.evaluate_actions(
|
|
current_obs,
|
|
masks=act_masks,
|
|
actions=actions,
|
|
memories=memories,
|
|
team_obs=team_obs,
|
|
team_act=team_actions,
|
|
seq_len=self.policy.sequence_length,
|
|
)
|
|
old_log_probs = ActionLogProbs.from_dict(batch).flatten()
|
|
log_probs = log_probs.flatten()
|
|
loss_masks = ModelUtils.list_to_tensor(batch["masks"], dtype=torch.bool)
|
|
# q_loss = self.ppo_value_loss(qs, old_values, returns_q, decay_eps, loss_masks)
|
|
|
|
# Use trust region from value, not baseline
|
|
baseline_loss = self.ppo_value_loss(
|
|
baseline_vals, old_marg_values, returns_v, decay_eps, loss_masks
|
|
)
|
|
value_loss = self.ppo_value_loss(
|
|
values, old_values, returns_v, decay_eps, loss_masks
|
|
)
|
|
|
|
# Regularizer loss reduces bias between the baseline and values. Other
|
|
# regularizers are possible here.
|
|
regularizer_loss = self.coma_regularizer_loss(values, baseline_vals)
|
|
|
|
policy_loss = self.ppo_policy_loss(
|
|
ModelUtils.list_to_tensor(batch["advantages"]),
|
|
log_probs,
|
|
old_log_probs,
|
|
loss_masks,
|
|
)
|
|
loss = (
|
|
policy_loss
|
|
+ 0.25 * (value_loss + baseline_loss)
|
|
+ 0.25 * regularizer_loss
|
|
- decay_bet * ModelUtils.masked_mean(entropy, loss_masks)
|
|
)
|
|
|
|
# Set optimizer learning rate
|
|
ModelUtils.update_learning_rate(self.optimizer, decay_lr)
|
|
self.optimizer.zero_grad()
|
|
loss.backward()
|
|
|
|
self.optimizer.step()
|
|
|
|
# ModelUtils.soft_update(
|
|
# self.policy.actor_critic.critic, self.policy.actor_critic.target, 1.0
|
|
# )
|
|
update_stats = {
|
|
# NOTE: abs() is not technically correct, but matches the behavior in TensorFlow.
|
|
# TODO: After PyTorch is default, change to something more correct.
|
|
"Losses/Policy Loss": torch.abs(policy_loss).item(),
|
|
"Losses/Value Loss": value_loss.item(),
|
|
# "Losses/Q Loss": q_loss.item(),
|
|
"Losses/Baseline Value Loss": baseline_loss.item(),
|
|
"Losses/Regularization Loss": regularizer_loss.item(),
|
|
"Policy/Learning Rate": decay_lr,
|
|
"Policy/Epsilon": decay_eps,
|
|
"Policy/Beta": decay_bet,
|
|
}
|
|
|
|
for reward_provider in self.reward_signals.values():
|
|
update_stats.update(reward_provider.update(batch))
|
|
|
|
return update_stats
|
|
|
|
def get_modules(self):
|
|
modules = {"Optimizer": self.optimizer}
|
|
for reward_provider in self.reward_signals.values():
|
|
modules.update(reward_provider.get_modules())
|
|
return modules
|