Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

180 行
7.3 KiB

from typing import Dict, Optional, Tuple, List
from mlagents.torch_utils import torch
import numpy as np
import math
from mlagents.trainers.buffer import AgentBuffer, AgentBufferField
from mlagents.trainers.trajectory import ObsUtil
from mlagents.trainers.torch.components.bc.module import BCModule
from mlagents.trainers.torch.components.reward_providers import create_reward_provider
from mlagents.trainers.policy.torch_policy import TorchPolicy
from mlagents.trainers.optimizer import Optimizer
from mlagents.trainers.settings import TrainerSettings
from mlagents.trainers.torch.utils import ModelUtils
class TorchOptimizer(Optimizer):
def __init__(self, policy: TorchPolicy, trainer_settings: TrainerSettings):
super().__init__()
self.policy = policy
self.trainer_settings = trainer_settings
self.update_dict: Dict[str, torch.Tensor] = {}
self.value_heads: Dict[str, torch.Tensor] = {}
self.memory_in: torch.Tensor = None
self.memory_out: torch.Tensor = None
self.m_size: int = 0
self.global_step = torch.tensor(0)
self.bc_module: Optional[BCModule] = None
self.create_reward_signals(trainer_settings.reward_signals)
self.critic_memory_dict: Dict[str, torch.Tensor] = {}
if trainer_settings.behavioral_cloning is not None:
self.bc_module = BCModule(
self.policy,
trainer_settings.behavioral_cloning,
policy_learning_rate=trainer_settings.hyperparameters.learning_rate,
default_batch_size=trainer_settings.hyperparameters.batch_size,
default_num_epoch=3,
)
@property
def critic(self):
raise NotImplementedError
def update(self, batch: AgentBuffer, num_sequences: int) -> Dict[str, float]:
pass
def create_reward_signals(self, reward_signal_configs):
"""
Create reward signals
:param reward_signal_configs: Reward signal config.
"""
for reward_signal, settings in reward_signal_configs.items():
# Name reward signals by string in case we have duplicates later
self.reward_signals[reward_signal.value] = create_reward_provider(
reward_signal, self.policy.behavior_spec, settings
)
def _evaluate_by_sequence(
self, tensor_obs: List[torch.Tensor], initial_memory: np.ndarray
) -> Tuple[Dict[str, torch.Tensor], AgentBufferField, torch.Tensor]:
"""
Evaluate the batch sequence-by-sequence, assembling the result. This enables us to get the
intermediate memories for the critic.
"""
num_experiences = tensor_obs[0].shape[0]
all_next_memories = AgentBufferField()
# The 1st sequence are the ones that are padded. So if seq_len = 3 and
# trajectory is of length 10, the ist sequence is [pad,pad,obs].
# Compute the number of elements in this padded seq.
leftover = num_experiences % self.policy.sequence_length
first_seq_len = self.policy.sequence_length if leftover == 0 else leftover
for _ in range(first_seq_len):
all_next_memories.append(initial_memory.squeeze().detach().numpy())
# Compute values for the potentially truncated initial sequence
_mem = initial_memory
seq_obs = []
for _obs in tensor_obs:
if leftover > 0:
# Pad
# _obs will always be bigger than leftover
padding = torch.zeros_like(
_obs[0 : self.policy.sequence_length - leftover]
)
padded_obs = torch.cat([padding, _obs[0:leftover]])
else:
padded_obs = _obs[0 : self.policy.sequence_length]
seq_obs.append(padded_obs)
init_values, _mem = self.critic.critic_pass(
seq_obs, _mem, sequence_length=self.policy.sequence_length
)
# Trim out padded part
all_values = {
signal_name: [init_values[signal_name][leftover:]]
for signal_name in init_values.keys()
}
# Evaluate other trajectories
for seq_num in range(
1, math.ceil((num_experiences) / (self.policy.sequence_length))
):
seq_obs = []
for _obs in tensor_obs:
start = seq_num * self.policy.sequence_length - leftover
end = (seq_num + 1) * self.policy.sequence_length - leftover
seq_obs.append(_obs[start:end])
values, _mem = self.critic.critic_pass(
seq_obs, _mem, sequence_length=self.policy.sequence_length
)
for _ in range(self.policy.sequence_length):
all_next_memories.append(_mem.squeeze().detach().numpy())
for signal_name, _val in values.items():
all_values[signal_name].append(_val)
# Create one tensor per reward signal
all_value_tensors = {
signal_name: torch.cat(value_list, dim=0)
for signal_name, value_list in all_values.items()
}
next_mem = _mem
return all_value_tensors, all_next_memories, next_mem
def get_trajectory_value_estimates(
self,
batch: AgentBuffer,
next_obs: List[np.ndarray],
done: bool,
agent_id: str = "",
) -> Tuple[Dict[str, np.ndarray], Dict[str, float], Optional[AgentBufferField]]:
n_obs = len(self.policy.behavior_spec.observation_specs)
if agent_id in self.critic_memory_dict:
memory = self.critic_memory_dict[agent_id]
else:
memory = (
torch.zeros((1, 1, self.critic.memory_size))
if self.policy.use_recurrent
else None
)
# Convert to tensors
current_obs = ObsUtil.from_buffer(batch, n_obs)
current_obs = [ModelUtils.list_to_tensor(obs) for obs in current_obs]
next_obs = [ModelUtils.list_to_tensor(obs) for obs in next_obs]
next_obs = [obs.unsqueeze(0) for obs in next_obs]
# If we're using LSTM, we want to get all the intermediate memories.
all_next_memories: Optional[AgentBufferField] = None
if self.policy.use_recurrent:
(
value_estimates,
all_next_memories,
next_memory,
) = self._evaluate_by_sequence(current_obs, memory)
else:
value_estimates, next_memory = self.critic.critic_pass(
current_obs, memory, sequence_length=batch.num_experiences
)
# Store the memory for the next trajectory
self.critic_memory_dict[agent_id] = next_memory
next_value_estimate, _ = self.critic.critic_pass(
next_obs, next_memory, sequence_length=1
)
for name, estimate in value_estimates.items():
value_estimates[name] = ModelUtils.to_numpy(estimate)
next_value_estimate[name] = ModelUtils.to_numpy(next_value_estimate[name])
if done:
for k in next_value_estimate:
if not self.reward_signals[k].ignore_done:
next_value_estimate[k] = 0.0
if agent_id in self.critic_memory_dict:
self.critic_memory_dict.pop(agent_id)
assert len(value_estimates["extrinsic"]) == batch.num_experiences
return value_estimates, next_value_estimate, all_next_memories