您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
145 行
5.3 KiB
145 行
5.3 KiB
from typing import Any, Dict
|
|
import torch
|
|
|
|
from mlagents.trainers.buffer import AgentBuffer
|
|
|
|
from mlagents_envs.timers import timed
|
|
from mlagents.trainers.policy.torch_policy import TorchPolicy
|
|
from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer
|
|
|
|
|
|
class TorchPPOOptimizer(TorchOptimizer):
|
|
def __init__(self, policy: TorchPolicy, trainer_params: Dict[str, Any]):
|
|
"""
|
|
Takes a Policy and a Dict of trainer parameters and creates an Optimizer around the policy.
|
|
The PPO optimizer has a value estimator and a loss function.
|
|
:param policy: A TFPolicy object that will be updated by this PPO Optimizer.
|
|
:param trainer_params: Trainer parameters dictionary that specifies the
|
|
properties of the trainer.
|
|
"""
|
|
# Create the graph here to give more granular control of the TF graph to the Optimizer.
|
|
|
|
super(TorchPPOOptimizer, self).__init__(policy, trainer_params)
|
|
params = list(self.policy.actor_critic.parameters())
|
|
|
|
self.optimizer = torch.optim.Adam(
|
|
params, lr=self.trainer_params["learning_rate"]
|
|
)
|
|
self.stats_name_to_update_name = {
|
|
"Losses/Value Loss": "value_loss",
|
|
"Losses/Policy Loss": "policy_loss",
|
|
}
|
|
|
|
self.stream_names = list(self.reward_signals.keys())
|
|
|
|
def ppo_value_loss(self, values, old_values, returns):
|
|
"""
|
|
Creates training-specific Tensorflow ops for PPO models.
|
|
:param returns:
|
|
:param old_values:
|
|
:param values:
|
|
"""
|
|
|
|
decay_epsilon = self.trainer_params["epsilon"]
|
|
|
|
value_losses = []
|
|
for name, head in values.items():
|
|
old_val_tensor = old_values[name]
|
|
returns_tensor = returns[name]
|
|
clipped_value_estimate = old_val_tensor + torch.clamp(
|
|
head - old_val_tensor, -decay_epsilon, decay_epsilon
|
|
)
|
|
v_opt_a = (returns_tensor - head) ** 2
|
|
v_opt_b = (returns_tensor - clipped_value_estimate) ** 2
|
|
value_loss = torch.mean(torch.max(v_opt_a, v_opt_b))
|
|
value_losses.append(value_loss)
|
|
value_loss = torch.mean(torch.stack(value_losses))
|
|
return value_loss
|
|
|
|
def ppo_policy_loss(self, advantages, log_probs, old_log_probs, masks):
|
|
"""
|
|
Creates training-specific Tensorflow ops for PPO models.
|
|
:param masks:
|
|
:param advantages:
|
|
:param log_probs: Current policy probabilities
|
|
:param old_log_probs: Past policy probabilities
|
|
"""
|
|
advantage = advantages.unsqueeze(-1)
|
|
|
|
decay_epsilon = self.trainer_params["epsilon"]
|
|
|
|
r_theta = torch.exp(log_probs - old_log_probs)
|
|
p_opt_a = r_theta * advantage
|
|
p_opt_b = (
|
|
torch.clamp(r_theta, 1.0 - decay_epsilon, 1.0 + decay_epsilon) * advantage
|
|
)
|
|
policy_loss = -torch.mean(torch.min(p_opt_a, p_opt_b))
|
|
return policy_loss
|
|
|
|
@timed
|
|
def update(self, batch: AgentBuffer, num_sequences: int) -> Dict[str, float]:
|
|
"""
|
|
Performs update on model.
|
|
:param batch: Batch of experiences.
|
|
:param num_sequences: Number of sequences to process.
|
|
:return: Results of update.
|
|
"""
|
|
returns = {}
|
|
old_values = {}
|
|
for name in self.reward_signals:
|
|
old_values[name] = torch.as_tensor(batch["{}_value_estimates".format(name)])
|
|
returns[name] = torch.as_tensor(batch["{}_returns".format(name)])
|
|
|
|
vec_obs = [torch.as_tensor(batch["vector_obs"])]
|
|
act_masks = torch.as_tensor(batch["action_mask"])
|
|
if self.policy.use_continuous_act:
|
|
actions = torch.as_tensor(batch["actions"]).unsqueeze(-1)
|
|
else:
|
|
actions = torch.as_tensor(batch["actions"])
|
|
|
|
memories = [
|
|
torch.as_tensor(batch["memory"][i])
|
|
for i in range(0, len(batch["memory"]), self.policy.sequence_length)
|
|
]
|
|
if len(memories) > 0:
|
|
memories = torch.stack(memories).unsqueeze(0)
|
|
|
|
if self.policy.use_vis_obs:
|
|
vis_obs = []
|
|
for idx, _ in enumerate(
|
|
self.policy.actor_critic.network_body.visual_encoders
|
|
):
|
|
vis_ob = torch.as_tensor(batch["visual_obs%d" % idx])
|
|
vis_obs.append(vis_ob)
|
|
else:
|
|
vis_obs = []
|
|
log_probs, entropy, values = self.policy.evaluate_actions(
|
|
vec_obs,
|
|
vis_obs,
|
|
masks=act_masks,
|
|
actions=actions,
|
|
memories=memories,
|
|
seq_len=self.policy.sequence_length,
|
|
)
|
|
value_loss = self.ppo_value_loss(values, old_values, returns)
|
|
policy_loss = self.ppo_policy_loss(
|
|
torch.as_tensor(batch["advantages"]),
|
|
log_probs,
|
|
torch.as_tensor(batch["action_probs"]),
|
|
torch.as_tensor(batch["masks"], dtype=torch.int32),
|
|
)
|
|
loss = (
|
|
policy_loss
|
|
+ 0.5 * value_loss
|
|
- self.trainer_params["beta"] * torch.mean(entropy)
|
|
)
|
|
self.optimizer.zero_grad()
|
|
loss.backward()
|
|
|
|
self.optimizer.step()
|
|
update_stats = {
|
|
"Losses/Policy Loss": abs(policy_loss.detach().numpy()),
|
|
"Losses/Value Loss": value_loss.detach().numpy(),
|
|
}
|
|
|
|
return update_stats
|