Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

337 行
12 KiB

import itertools
import numpy as np
from typing import Any, Dict, List, Tuple, Union
import gym
from gym import error, spaces
from mlagents_envs.base_env import BaseEnv
from mlagents_envs.base_env import DecisionSteps, TerminalSteps
from mlagents_envs import logging_util
class UnityGymException(error.Error):
"""
Any error related to the gym wrapper of ml-agents.
"""
pass
logger = logging_util.get_logger(__name__)
logging_util.set_log_level(logging_util.INFO)
GymStepResult = Tuple[np.ndarray, float, bool, Dict]
class UnityToGymWrapper(gym.Env):
"""
Provides Gym wrapper for Unity Learning Environments.
"""
def __init__(
self,
unity_env: BaseEnv,
uint8_visual: bool = False,
flatten_branched: bool = False,
allow_multiple_obs: bool = False,
):
"""
Environment initialization
:param unity_env: The Unity BaseEnv to be wrapped in the gym. Will be closed when the UnityToGymWrapper closes.
:param uint8_visual: Return visual observations as uint8 (0-255) matrices instead of float (0.0-1.0).
:param flatten_branched: If True, turn branched discrete action spaces into a Discrete space rather than
MultiDiscrete.
:param allow_multiple_obs: If True, return a list of np.ndarrays as observations with the first elements
containing the visual observations and the last element containing the array of vector observations.
If False, returns a single np.ndarray containing either only a single visual observation or the array of
vector observations.
"""
self._env = unity_env
# Take a single step so that the brain information will be sent over
if not self._env.behavior_specs:
self._env.step()
self.visual_obs = None
# Save the step result from the last time all Agents requested decisions.
self._previous_decision_step: DecisionSteps = None
self._flattener = None
# Hidden flag used by Atari environments to determine if the game is over
self.game_over = False
self._allow_multiple_obs = allow_multiple_obs
# Check brain configuration
if len(self._env.behavior_specs) != 1:
raise UnityGymException(
"There can only be one behavior in a UnityEnvironment "
"if it is wrapped in a gym."
)
self.name = list(self._env.behavior_specs.keys())[0]
self.group_spec = self._env.behavior_specs[self.name]
if self._get_n_vis_obs() == 0 and self._get_vec_obs_size() == 0:
raise UnityGymException(
"There are no observations provided by the environment."
)
if not self._get_n_vis_obs() >= 1 and uint8_visual:
logger.warning(
"uint8_visual was set to true, but visual observations are not in use. "
"This setting will not have any effect."
)
else:
self.uint8_visual = uint8_visual
if (
self._get_n_vis_obs() + self._get_vec_obs_size() >= 2
and not self._allow_multiple_obs
):
logger.warning(
"The environment contains multiple observations. "
"You must define allow_multiple_obs=True to receive them all. "
"Otherwise, only the first visual observation (or vector observation if"
"there are no visual observations) will be provided in the observation."
)
# Check for number of agents in scene.
self._env.reset()
decision_steps, _ = self._env.get_steps(self.name)
self._check_agents(len(decision_steps))
self._previous_decision_step = decision_steps
# Set action spaces
if self.group_spec.action_spec.is_discrete():
branches = self.group_spec.action_spec.discrete_branches
if self.group_spec.action_spec.discrete_size == 1:
self._action_space = spaces.Discrete(branches[0])
else:
if flatten_branched:
self._flattener = ActionFlattener(branches)
self._action_space = self._flattener.action_space
else:
self._action_space = spaces.MultiDiscrete(branches)
else:
if flatten_branched:
logger.warning(
"The environment has a non-discrete action space. It will "
"not be flattened."
)
high = np.array([1] * self.group_spec.action_spec.continuous_size)
self._action_space = spaces.Box(-high, high, dtype=np.float32)
# Set observations space
list_spaces: List[gym.Space] = []
shapes = self._get_vis_obs_shape()
for shape in shapes:
if uint8_visual:
list_spaces.append(spaces.Box(0, 255, dtype=np.uint8, shape=shape))
else:
list_spaces.append(spaces.Box(0, 1, dtype=np.float32, shape=shape))
if self._get_vec_obs_size() > 0:
# vector observation is last
high = np.array([np.inf] * self._get_vec_obs_size())
list_spaces.append(spaces.Box(-high, high, dtype=np.float32))
if self._allow_multiple_obs:
self._observation_space = spaces.Tuple(list_spaces)
else:
self._observation_space = list_spaces[0] # only return the first one
def reset(self) -> Union[List[np.ndarray], np.ndarray]:
"""Resets the state of the environment and returns an initial observation.
Returns: observation (object/list): the initial observation of the
space.
"""
self._env.reset()
decision_step, _ = self._env.get_steps(self.name)
n_agents = len(decision_step)
self._check_agents(n_agents)
self.game_over = False
res: GymStepResult = self._single_step(decision_step)
return res[0]
def step(self, action: List[Any]) -> GymStepResult:
"""Run one timestep of the environment's dynamics. When end of
episode is reached, you are responsible for calling `reset()`
to reset this environment's state.
Accepts an action and returns a tuple (observation, reward, done, info).
Args:
action (object/list): an action provided by the environment
Returns:
observation (object/list): agent's observation of the current environment
reward (float/list) : amount of reward returned after previous action
done (boolean/list): whether the episode has ended.
info (dict): contains auxiliary diagnostic information.
"""
if self._flattener is not None:
# Translate action into list
action = self._flattener.lookup_action(action)
spec = self.group_spec
action = np.array(action).reshape((1, spec.action_spec.size))
self._env.set_actions(self.name, action)
self._env.step()
decision_step, terminal_step = self._env.get_steps(self.name)
self._check_agents(max(len(decision_step), len(terminal_step)))
if len(terminal_step) != 0:
# The agent is done
self.game_over = True
return self._single_step(terminal_step)
else:
return self._single_step(decision_step)
def _single_step(self, info: Union[DecisionSteps, TerminalSteps]) -> GymStepResult:
if self._allow_multiple_obs:
visual_obs = self._get_vis_obs_list(info)
visual_obs_list = []
for obs in visual_obs:
visual_obs_list.append(self._preprocess_single(obs[0]))
default_observation = visual_obs_list
if self._get_vec_obs_size() >= 1:
default_observation.append(self._get_vector_obs(info)[0, :])
else:
if self._get_n_vis_obs() >= 1:
visual_obs = self._get_vis_obs_list(info)
default_observation = self._preprocess_single(visual_obs[0][0])
else:
default_observation = self._get_vector_obs(info)[0, :]
if self._get_n_vis_obs() >= 1:
visual_obs = self._get_vis_obs_list(info)
self.visual_obs = self._preprocess_single(visual_obs[0][0])
done = isinstance(info, TerminalSteps)
return (default_observation, info.reward[0], done, {"step": info})
def _preprocess_single(self, single_visual_obs: np.ndarray) -> np.ndarray:
if self.uint8_visual:
return (255.0 * single_visual_obs).astype(np.uint8)
else:
return single_visual_obs
def _get_n_vis_obs(self) -> int:
result = 0
for shape in self.group_spec.observation_shapes:
if len(shape) == 3:
result += 1
return result
def _get_vis_obs_shape(self) -> List[Tuple]:
result: List[Tuple] = []
for shape in self.group_spec.observation_shapes:
if len(shape) == 3:
result.append(shape)
return result
def _get_vis_obs_list(
self, step_result: Union[DecisionSteps, TerminalSteps]
) -> List[np.ndarray]:
result: List[np.ndarray] = []
for obs in step_result.obs:
if len(obs.shape) == 4:
result.append(obs)
return result
def _get_vector_obs(
self, step_result: Union[DecisionSteps, TerminalSteps]
) -> np.ndarray:
result: List[np.ndarray] = []
for obs in step_result.obs:
if len(obs.shape) == 2:
result.append(obs)
return np.concatenate(result, axis=1)
def _get_vec_obs_size(self) -> int:
result = 0
for shape in self.group_spec.observation_shapes:
if len(shape) == 1:
result += shape[0]
return result
def render(self, mode="rgb_array"):
return self.visual_obs
def close(self) -> None:
"""Override _close in your subclass to perform any necessary cleanup.
Environments will automatically close() themselves when
garbage collected or when the program exits.
"""
self._env.close()
def seed(self, seed: Any = None) -> None:
"""Sets the seed for this env's random number generator(s).
Currently not implemented.
"""
logger.warning("Could not seed environment %s", self.name)
return
@staticmethod
def _check_agents(n_agents: int) -> None:
if n_agents > 1:
raise UnityGymException(
f"There can only be one Agent in the environment but {n_agents} were detected."
)
@property
def metadata(self):
return {"render.modes": ["rgb_array"]}
@property
def reward_range(self) -> Tuple[float, float]:
return -float("inf"), float("inf")
@property
def spec(self):
return None
@property
def action_space(self):
return self._action_space
@property
def observation_space(self):
return self._observation_space
class ActionFlattener:
"""
Flattens branched discrete action spaces into single-branch discrete action spaces.
"""
def __init__(self, branched_action_space):
"""
Initialize the flattener.
:param branched_action_space: A List containing the sizes of each branch of the action
space, e.g. [2,3,3] for three branches with size 2, 3, and 3 respectively.
"""
self._action_shape = branched_action_space
self.action_lookup = self._create_lookup(self._action_shape)
self.action_space = spaces.Discrete(len(self.action_lookup))
@classmethod
def _create_lookup(self, branched_action_space):
"""
Creates a Dict that maps discrete actions (scalars) to branched actions (lists).
Each key in the Dict maps to one unique set of branched actions, and each value
contains the List of branched actions.
"""
possible_vals = [range(_num) for _num in branched_action_space]
all_actions = [list(_action) for _action in itertools.product(*possible_vals)]
# Dict should be faster than List for large action spaces
action_lookup = {
_scalar: _action for (_scalar, _action) in enumerate(all_actions)
}
return action_lookup
def lookup_action(self, action):
"""
Convert a scalar discrete action into a unique set of branched actions.
:param: action: A scalar value representing one of the discrete actions.
:return: The List containing the branched actions.
"""
return self.action_lookup[action]