Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

11 KiB

Installing ML-Agents for Windows

ML-Agents supports Windows 10. While it might be possible to run ML-Agents using other versions of Windows, it has not been tested on other versions. Furthermore, ML-Agents has not been tested on a Windows VM such as Bootcamp or Parallels.

To use ML-Agents, you install Python and the required Python packages as outlined below. This guide also covers how set up GPU-based training (for advanced users). GPU-based training is not required for the v0.3 release of ML-Agents. However, training on a GPU might be required by future versions and features.

Step 1: Install Python via Anaconda

Download and install Anaconda for Windows. By using Anaconda, you can manage separate environments for different distributions of Python. Python 3 is required as we no longer support Python 2. In this guide, we are using Python version 3.5 (Anaconda comes with Python 3.6, we will create an environment with python 3.5) and Anaconda version 5.1 (64-bit or 32-bit direct links).

Anaconda Install

We recommend the default advanced installation options. However, select the options appropriate for your specific situation.

Anaconda Install

After installation, you must open Anaconda Navigator to finish the setup. From the Windows search bar, type anaconda navigator. You can close Anaconda Navigator after it opens. If environment variables were not created, or if you see the error "conda is not recognized as internal or external command", in System Variables, "Path" add the following new paths:

    C:\ProgramData\Anaconda3\Scripts
    C:\ProgramData\Anaconda3\Scripts\conda.exe
    C:\ProgramData\Anaconda3
    C:\ProgramData\Anaconda3\python.exe

Step 2: Setup and Activate a New Conda Environment

You will create a new Conda environment to be used with ML-Agents. This means that all the packages that you install are localized to just this environment. It will not affect any other installation of Python or other environments. Whenever you want to run ML-Agents, you will need activate this Conda environment.

To create a new Conda environment, open a new Anaconda Prompt (Anaconda Prompt in the search bar) and type in the following command:

conda create -n ml-agents python=3.5

You may be asked to install new packages. Type y and press enter (make sure you are connected to the internet). You must install these required packages. The new Conda environment is called ml-agents and uses Python version 3.6.

Anaconda Install

To use this environment, you must activate it. (To use this environment In the future, you can run the same command). In the same Anaconda Prompt, type in the following command:

conda activate ml-agents

You should see (ml-agents) prepended on the last line.

Next, install tensorflow. Install this package using pip - which is a package management system used to install Python packages. Latest versions of Tensorflow won't work, so you will need to make sure that you install version 1.4.0. In the same Anaconda Prompt, type in the following command (make sure you are connected to the internet):

pip install tensorflow==1.4.0

Step 3: Install Required Python Packages

ML-Agents depends on a number of Python packages. Use pip to install these Python dependencies.

If you haven't already, clone the ML-Agents Github repository to your local computer. You can do this using Git (download here) and running the following commands in an Anaconda Prompt (if you open a new prompt, be sure to activate the ml-agents Conda environment by typing activate ml-agents):

git clone git@github.com:Unity-Technologies/ml-agents.git

If you don't want to use Git, you can always directly download all the files here.

In our example, the files are located in C:\Downloads. After you have either cloned or downloaded the files, from the Anaconda Prompt, change to the python directory inside the ML-agents directory:

cd C:\Downloads\ml-agents\python

Make sure you are connected to the internet and then type in the Anaconda Prompt:

pip install .

This will complete the installation of all the required Python packages to run ML-Agents.

(Optional) Step 4: GPU Training using ML-Agents

Not required to use v0.3 for ML-Agents. This is a guide for advanced users who want to train using GPUs. Additionally, you will need to check if your GPU is CUDA compatible. Please check Nvidia's page here.

As of ML-Agents v0.3, only CUDA 8 and cuDNN 6 is supported.

Install Nvidia CUDA toolkit

Download and install the CUDA toolkit from Nvidia's archive. The toolkit includes GPU-accelerated libraries, debugging and optimization tools, a C/C++ (Step Visual Studio 2015) compiler and a runtime library and is needed to run ML-Agents. In this guide, we are using version 8.0.61 (direct link).

Before installing, please make sure you close any running instances of Unity or Visual Studio.

Run the installer and select the Express option. Note the directory where you installed the CUDA toolkit. In this guide, we installed in the directory C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0

Install Nvidia cuDNN library

Download and install the cuDNN library from Nvidia. cuDNN is is a GPU-accelerated library of primitives for deep neural networks. Before you can download, you will need to sign up for free to the Nvidia Developer Program.

cuDNN membership required

Once you've signed up, go back to the cuDNN downloads page. You may or may not be asked to fill out a short survey. When you get to the list cuDNN releases, make sure you are downloading the right version for the CUDA toolkit you installed in Step 1. In this guide, we are using version 6.0 for CUDA toolkit version 8.0 (direct link).

After you have downloaded the cuDNN files, you will need to extract the files into the CUDA toolkit directory. In the cuDNN zip file, there are three folders called bin, include, and lib.

cuDNN zip files

Copy these three folders into the CUDA toolkit directory. The CUDA toolkit directory is located at C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0

cuda toolkit directory

Set Environment Variables

You will need to add one environment variable and two path variables.

To set the environment variable, type environment variables in the search bar (this can be reached by hitting the Windows key or the bottom left Windows button). You should see an option called Edit the system environment variables.

edit env variables

From here, click the Environment Variables button. Click New to add a new system variable (make sure you do this under System variables and not User variables.

new system variable

For Variable Name, enter CUDA_HOME. For the variable value, put the directory location for the CUDA toolkit. In this guide, the directory location is C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0. Press OK once.

system variable names and values

To set the two path variables, inside the same Environment Variables window and under the second box called System Variables, find a variable called PATH and click Edit. You will add two directories to the list. For this guide, the two entries would look like:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\extras\CUPTI\libx64

Make sure to replace the relevant directory location with the one you have installed. Please note that case sensitivity matters.

Path variables

Install TensorFlow GPU

Next, install tensorflow-gpu using pip. You'll need version 1.4.0 as newer versions require CUDA 9 which is not yet supported. In an Anaconda Prompt with the Conda environment ml-agents activated, type in the following command (make sure you are connected to the internet):

pip install tensorflow-gpu==1.4.0

Lastly, you should test to see if everything installed properly and that TensorFlow can identify your GPU. In the same Anaconda Prompt, type in the following command:

import tensorflow as tf

sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

You should see something similar to:

Found device 0 with properties ...

Step Visual Studio 2015: CUDA 8.0 is not compatible with Visual Studio 2017, so you will need an older version. Uninstall Visual Studio 2017 that comes with Unity, download Visual Studio Enterprise 2015 and install it with the Windows SDK. If you don't want/ can't install Visual Studio Enterprise 2015, you will need: Visual C++ Redistributable for Visual Studio 2015, Visual Studio Community 2015 + Windows SDK.

Acknowledgements

We would like to thank Jason Weimann and Nitish S. Mutha for writing the original articles which were used to create this guide.