Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

109 行
4.1 KiB

using System.Linq;
namespace Unity.MLAgents.Sensors
{
/// <summary>
/// The compression setting for visual/camera observations.
/// </summary>
public enum SensorCompressionType
{
/// <summary>
/// No compression. Data is preserved as float arrays.
/// </summary>
None,
/// <summary>
/// PNG format. Data will be stored in binary format.
/// </summary>
PNG
}
/// <summary>
/// A description of the compression used for observations.
/// </summary>
/// <remarks>
/// Most ISensor implementations can't take advantage of compression,
/// and should return CompressionSpec.Default() from their ISensor.GetCompressionSpec() methods.
/// Visual observations, or mulitdimensional categorical observations (for example, image segmentation
/// or the piece types in a match-3 game board) can use PNG compression reduce the amount of
/// data transferred between Unity and the trainer.
/// </remarks>
public struct CompressionSpec
{
internal SensorCompressionType m_SensorCompressionType;
/// <summary>
/// The compression type that the sensor will use for its observations.
/// </summary>
public SensorCompressionType SensorCompressionType
{
get => m_SensorCompressionType;
}
internal int[] m_CompressedChannelMapping;
/// The mapping of the channels in compressed data to the actual channel after decompression.
/// The mapping is a list of integer index with the same length as
/// the number of output observation layers (channels), including padding if there's any.
/// Each index indicates the actual channel the layer will go into.
/// Layers with the same index will be averaged, and layers with negative index will be dropped.
/// For example, mapping for CameraSensor using grayscale and stacking of two: [0, 0, 0, 1, 1, 1]
/// Mapping for GridSensor of 4 channels and stacking of two: [0, 1, 2, 3, -1, -1, 4, 5, 6, 7, -1, -1]
public int[] CompressedChannelMapping
{
get => m_CompressedChannelMapping;
}
/// <summary>
/// Return a CompressionSpec indicating possible compression.
/// </summary>
/// <param name="sensorCompressionType">The compression type to use.</param>
/// <param name="compressedChannelMapping">Optional mapping mapping of the channels in compressed data to the
/// actual channel after decompression.</param>
public CompressionSpec(SensorCompressionType sensorCompressionType, int[] compressedChannelMapping = null)
{
m_SensorCompressionType = sensorCompressionType;
m_CompressedChannelMapping = compressedChannelMapping;
}
/// <summary>
/// Return a CompressionSpec indicating no compression. This is recommended for most sensors.
/// </summary>
/// <returns></returns>
public static CompressionSpec Default()
{
return new CompressionSpec
{
m_SensorCompressionType = SensorCompressionType.None,
m_CompressedChannelMapping = null
};
}
/// <summary>
/// Return whether the compressed channel mapping is "trivial"; if so it doesn't need to be sent to the
/// trainer.
/// </summary>
/// <returns></returns>
internal bool IsTrivialMapping()
{
var mapping = CompressedChannelMapping;
if (mapping == null)
{
return true;
}
// check if mapping equals zero mapping
if (mapping.Length == 3 && mapping.All(m => m == 0))
{
return true;
}
// check if mapping equals identity mapping
for (var i = 0; i < mapping.Length; i++)
{
if (mapping[i] != i)
{
return false;
}
}
return true;
}
}
}